线性粘弹性材料广义Maxwell模型
粘弹性材料概括了材料的弹性和粘性特征,由弹簧和阻尼分别表征。广义Maxwell模型是多支Maxwell模型的组合。如图所示:
其在时域的数学表达式为:
E
(
t
)
=
E
∞
+
∑
i
=
1
N
E
i
e
−
t
/
t
R
i
(1)
E(t)=E_\infty+\sum_{i=1}^{N} E_ie^{-t/t_{Ri}} \tag{1}
E(t)=E∞+i=1∑NEie−t/tRi(1)
频域的数学表达式为:
E
(
ω
)
=
E
∞
+
∑
i
=
1
N
E
i
ω
t
R
i
i
1
+
ω
t
R
i
i
(2)
E(\omega)=E_\infty+\sum_{i=1}^{N} \frac{E_i \omega t_{Ri}i}{1+\omega t_{Ri}i} \tag{2}
E(ω)=E∞+i=1∑N1+ωtRiiEiωtRii(2)
式中:
E
∞
—
—
E_\infty ——
E∞——平衡模量;
E
i
—
—
E_i ——
Ei——第
i
i
i时刻的松弛强度
t
R
i
—
—
t_{Ri} ——
tRi——第
i
i
i时刻的松弛时间,
t
R
i
=
η
i
/
E
i
t_{Ri}=\eta_i/E_i
tRi=ηi/Ei
i
—
—
i——
i——为虚数单位
Abaqus中的Prony 级数
引入
E
0
=
E
∞
+
∑
i
=
1
N
E
i
E_0=E_\infty +\sum_{i=1}^{N} E_i
E0=E∞+∑i=1NEi,则
m
i
=
E
i
/
E
0
m_i=E_i/E_0
mi=Ei/E0
方程(1)可写做:
E
(
t
)
=
E
0
(
1
−
∑
i
=
1
N
m
i
)
+
∑
i
=
1
N
m
i
E
0
e
−
t
/
t
R
i
(3)
E(t)=E_0(1-\sum_{i=1}^{N}m_i)+\sum_{i=1}^{N}m_iE_0e^{-t/t_{Ri}}\tag{3}
E(t)=E0(1−i=1∑Nmi)+i=1∑NmiE0e−t/tRi(3)
由弹性模量之间的关系:
E
=
3
K
(
1
−
2
ν
)
(4)
E=3K(1-2\nu) \tag{4}
E=3K(1−2ν)(4)
E
=
2
G
(
1
+
ν
)
(5)
E=2G(1+\nu) \tag{5}
E=2G(1+ν)(5)
可以计算剪切模量和体积模量。
G
(
t
)
=
G
0
(
1
−
∑
i
=
1
N
g
i
)
+
∑
i
=
1
N
g
i
G
0
e
−
t
/
t
R
i
(6)
G(t)=G_0(1-\sum_{i=1}^{N}g_i)+\sum_{i=1}^{N}g_iG_0e^{-t/t_{Ri}}\tag{6}
G(t)=G0(1−i=1∑Ngi)+i=1∑NgiG0e−t/tRi(6)
K
(
t
)
=
K
0
(
1
−
∑
i
=
1
N
k
i
)
+
∑
i
=
1
N
k
i
K
0
e
−
t
/
t
R
i
(7)
K(t)=K_0(1-\sum_{i=1}^{N}k_i)+\sum_{i=1}^{N}k_iK_0e^{-t/t_{Ri}}\tag{7}
K(t)=K0(1−i=1∑Nki)+i=1∑NkiK0e−t/tRi(7)
在Abaqus中粘弹性参数需要输入Elastic和Viscoelastic
Elastic中
Viscoelastic中
特别注意Abaqus中,Prony为归一化参数,输入
g
i
,
k
i
,
t
R
i
g_i,k_i,t_{Ri}
gi,ki,tRi 有时体积模量为常数,此时
k
i
=
0
k_i=0
ki=0
例子
弹性模量为Maxwell模型:
N | E E E | t R i t_{Ri} tRi |
---|---|---|
1 | 11455.3 | 2.54 ∗ 1 0 − 6 2.54*10^{-6} 2.54∗10−6 |
2 | 1.005 | 0.0156 |
3 | 0.256 | 0.0637 |
4 | 0.101 | 0.234 |
∞ \infty ∞ | 0.01 | |
ν \nu ν | 0.35 |
最终输入为
--------------------------------------------------------------------个人理解,欢迎批评指正及讨论交流--------------------------------------------------------------------