- 博客(14)
- 收藏
- 关注
原创 有限时域与无限时域 LQR
特性有限时域 LQR无限时域 LQR时间区间有限t0tf[t_0, t_f]t0tf无限t0∞t0∞控制律时变的 $ K(t) $ 或 $ K_k $时不变的 $ K $终端代价有,需要设计者指定 $ P_f $无求解方程黎卡提微分/差分方程(DRE)代数黎卡提方程(ARE)稳定性不保证保证(在可控/可镇等条件下)计算复杂度需要在线或离线积分/逆向求解 DRE离线求解一次 ARE,计算简单主要应用。
2025-11-28 11:14:14
834
原创 优化算法:牛顿法、BFGS 与 L-BFGS 的原理剖析
在无约束非线性优化问题中,牛顿法及其衍生算法构成了二阶方法的核心。本文旨在精确描述牛顿法、BFGS 算法及其有限内存版本 L-BFGS 的基本原理、迭代过程及各自特点,阐明其间的继承与发展关系。
2025-11-25 10:04:32
48
原创 ESDF 地图:概念、计算与路径规划应用
ESDF(欧氏符号距离场)地图是一种高效的路径规划工具,通过记录平面内各点到最近障碍边界的欧氏距离,为机器人提供丰富的导航信息。相比传统二值地图,ESDF能精确计算"离障碍物多远"和"该往哪躲"等关键数据。主要计算方法包括快速近似但精度较低的两遍扫描法、精确但计算复杂的Felzenszwalb算法,以及适合动态环境的FIESTA增量更新算法。在轨迹规划中,ESDF可用于梯度引导路径搜索、安全走廊构建和轨迹优化框架,帮助机器人在复杂环境中生成平滑、安全的路径。其多样化的
2025-11-17 16:13:42
1267
原创 梯度矩阵、雅可比矩阵与海森矩阵:多变量函数分析的三核心矩阵
在数学的世界里,多变量函数的分析一直是研究的重点之一。当我们试图理解一个函数在多维空间中的行为时,梯度矩阵、雅可比矩阵和海森矩阵这三个概念就显得尤为重要。它们像是多变量函数的“三剑客”,各有各的定义、意义和相互关系,共同帮助我们洞察函数的奥秘。
2025-10-21 16:19:04
629
原创 Ceres Solver:数学原理与使用方法总结
Ceres Solver 是一个开源的 C++ 库,用于建模和求解大规模优化问题。它在计算机视觉、机器人学、机器学习等领域有着广泛的应用,例如在三维重建、运动估计、轨迹优化等任务中发挥着重要作用。Ceres Solver 提供了丰富的功能和灵活的接口,使得研究人员和开发者能够高效地构建和求解各种优化问题。本文将详细介绍 Ceres Solver 的数学原理以及具体的使用方法,旨在帮助读者更好地理解和应用这一强大的工具。
2025-10-16 17:20:13
1115
原创 参考线平滑:离散点、螺旋线与样条曲线的数学之美
在 Apollo 开源代码中,参考线平滑模块如同一个“幕后工匠”,将粗糙的车道中心线,打磨成一条光滑、可跟踪的优化轨迹。在这个模块中,包含着三种各具特点的平滑算法:离散点平滑(Discrete Points Smoothing)、螺旋线平滑(Spiral Smoothing)与样条曲线平滑(Spline-based Smoothing)。
2025-10-15 14:28:52
510
原创 卡尔曼滤波家族全览:从线性最优到非线性鲁棒估计
本文从最基本的卡尔曼滤波(KF)出发,梳理其数学原理、算法流程与特点;沿着"线性 → 非线性、时变 → 时不变、最优 → 次优/高效"三条脉络,展开说明扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)与稳态卡尔曼滤波(Steady-State KF)的思想、过程、适用场景与优缺点。
2025-10-09 15:17:51
742
原创 局部路径规划-人工势场法(Artificial Potential Field)
人工势场法(Artificial Potential Field,APF)是一种模拟物理力场的局部路径规划方法,1985 年由 Khatib 提出,常用于移动机器人、无人车、无人机的实时避障与导航。使用APF算法规划从起点(0,0),至终点(10,10),绕开圆形障碍物({5,5},1.5),({2,8},1.0),({8,2},1.0)的轨迹路线,并尽可能远离障碍物。采用调谐势函数(如双曲、对数、高斯)或自适应增益 k_att、k_rep,减少震荡。:U 形障碍物、走廊尽头等处合力为零,机器人“卡住”;
2025-09-10 13:42:25
696
原创 TDR-OBCA: A Reliable Planner for Autonomous Driving in Free-Space Environment
本文总结TDR-OBCA轨迹规划算法,采用"上层离散搜索+下层连续优化"的双层框架,在H-OBCA基础上引入两重预热机制和问题重构。通过Temporal Profile Warm-start生成时空关联轨迹、Dual Variable Warm-start预计算对偶变量,再求解重构后的MPC问题,显著提升了算法的鲁棒性、舒适性和求解效率。该方法在保持轨迹质量的同时降低了计算耗时,且其预热机制可推广至其他非凸优化问题。未来可扩展至动态障碍物场景,并探索端到端学习进一步优化计算效率。
2025-09-04 13:47:32
683
原创 基于PJSO算法的速度规划
本文提出基于分段加加速度优化(PJSO)的纵向速度规划方法,将静态路径转化为满足动力学约束和时间最优的可行驶轨迹。该算法将速度规划转化为二次规划问题,通过离散化轨迹点并优化速度、加速度变量,以最小化加加速度和加速度平方和为目标,平衡行驶效率与舒适性。算法建立了包含运动学约束、边界条件和物理限制的数学模型,并在泊车场景中验证了其有效性。仿真结果表明,该方法能实现"快升-匀速-快降"的速度曲线,在保证终点状态的同时尽可能维持最大车速行驶。
2025-09-01 17:09:49
296
原创 Dubins、RS、CC、HC轨迹
本文总结了四种经典路径规划算法:Dubins曲线;Reeds-Shepp(RS)曲线;Continuous-Curvature(CC)曲线;Hybrid-Curvature(HC)曲线。
2025-08-15 09:19:29
1304
原创 用Ceres给无人车“修”一条最优轨迹
本文使用Google Ceres-Solver对局部轨迹进行优化,将原本不满足运动约束的“路径”,平滑得到车辆可执行的“轨迹”。
2025-08-08 11:30:32
328
原创 【Navigation2】膨胀层inflation_layer算法解读
在轨迹规划中,为了让机器人实现避障,并且轨迹更居中、更自然、更安全,需要在障碍物地图中,构建一个平滑的代价势场。Navigation2对栅格地图进行膨胀处理,建立代价势场来指引规划器,故将Nav2中的膨胀层计算过程做整理,下面按照“整体框架 → 代价说明 → 计算主流程 → 关键点解析”的顺序,逐次展开
2025-08-07 16:08:13
691
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅