自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 Transformer架构拆解

由于Transformer架构覆盖的知识面较广,题主在学习的过程中存在较多的疑惑,特地写下此篇内容进行阶段性的学习总结,有什么问题恳请各位大佬指正。

2025-04-01 18:05:19 1467

原创 端到端大模型简述

传统模型:需多模块串联,如语音识别中的“语音→文本→语义理解→回复生成”,每个模块独立设计,依赖人工特征工程或规则。(目前901的智驾处理模型)将感知(如目标检测)、预测(如路径规划)、决策(如控制指令)等环节整合到单一模型中,减少信息传递的延迟和误差。端到端模型:通过深度学习直接学习输入到输出的映射关系,省去中间处理步骤,如输入语音直接输出回复语音。本质是数据驱动的黑箱学习,模型通过海量数据自动提取特征并优化决策,而非依赖专家经验设计规则。上限高:通过数据驱动,可处理复杂场景(如极端天气、突发障碍)。

2025-04-01 16:11:06 761

原创 神经网络的发展与Transformer的特点

为了探究Transformer架构的来由与发展情况,这里对过往的主要神经网络进行了回顾,并分析了Transformer架构的优点与创新。理解自然语言、图像、传感器输出等数据,高效生成内容/实现判断/做出决策。可见神经网络需要具备理解能力(编码器,提取数据特征)与生成能力(解码器,根据提取的数据特征进行内容生成和决策判断)。CNN:并行计算、参数量少;无法识别时空关系RNN/LSTM/GRU:任意长度输入输出、记忆能力;串行计算;无法识别空间关系。

2025-04-01 16:06:29 1639

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除