- 尝试用线性回归模型,来解决欠拟合问题,效果不好
我们可以使用线性回归模型来拟合数据,然而,在现实中,数据未必总是线性(或接近线性)的。当数据并非线性时,直接使用LinearRegression的效果可能会较差,产生欠拟合。 - 欠拟合 是不涉及未知数据的,欠拟合是训练集相关
-
所以线性回归 对非线性 拟合效果不好。相当于蒙。
因为线性回归是直的,在训练集上表现不好,产生欠拟合现象,R2 值很低。
-
此时,我们可以尝试使用多项式扩展来进行改进。
多项式扩展,可以认为是对现有数据进行的一种转换,通过将数据映射到更高维度的空间中,该模型就可以拟合更广泛的数据。
此时,我们可以尝试使用多项式扩展来进行改进。
多项式扩展,可以认为是对现有数据进行的一种转换,通过将数据映射到更高维度的空间中,该模型就可以拟合更广泛的数据。
假设,我们有如下的二元线性模型:
如果该模型的拟合效果不佳,我们就可以对该模型进行多项式扩展。例如,我们进行二项式扩展(也可以进行更高阶的扩展),结果为:
当进行多项式扩展后,我们就可以认为,模型由以前的直线变成了曲线。从而可以更灵活的去拟合数据。
多项式拟合的应用,仍然变为线性模型
经过多项式扩展后,我们依然可以使用之前的线性回归模型去拟合数据。这是因为,我们可以假设:
则二项式扩展式就变成了
源于:https://blog.csdn.net/qq_42442369/article/details/86506233