线性回归之多项式扩展

  • 尝试用线性回归模型,来解决欠拟合问题,效果不好
    我们可以使用线性回归模型来拟合数据,然而,在现实中,数据未必总是线性(或接近线性)的。当数据并非线性时,直接使用LinearRegression的效果可能会较差,产生欠拟合。
  • 欠拟合 是不涉及未知数据的,欠拟合是训练集相关
  • 所以线性回归 对非线性 拟合效果不好。相当于蒙。

    因为线性回归是直的,在训练集上表现不好,产生欠拟合现象,R2 值很低。

  • 此时,我们可以尝试使用多项式扩展来进行改进。
    多项式扩展,可以认为是对现有数据进行的一种转换,通过将数据映射到更高维度的空间中,该模型就可以拟合更广泛的数据。

     此时,我们可以尝试使用多项式扩展来进行改进。
多项式扩展,可以认为是对现有数据进行的一种转换,通过将数据映射到更高维度的空间中,该模型就可以拟合更广泛的数据。
假设,我们有如下的二元线性模型:

 \hat{y}=W_{0}+W_{1}X_{1}+W_{2}X_{2}

如果该模型的拟合效果不佳,我们就可以对该模型进行多项式扩展。例如,我们进行二项式扩展(也可以进行更高阶的扩展),结果为:

\hat{y}=W_{0}+W_{1}X_{1}+W_{2}X_{2}+W_{3}X_{1}X_{2}+W_{4}X_{1}^{2}+W_{5}X_{2}^{2}

当进行多项式扩展后,我们就可以认为,模型由以前的直线变成了曲线。从而可以更灵活的去拟合数据。

多项式拟合的应用,仍然变为线性模型

经过多项式扩展后,我们依然可以使用之前的线性回归模型去拟合数据。这是因为,我们可以假设:

Z=[X_{1},X_{2},X_{1}X_{2},X_{1}^{2},X_{2}^{2}]

则二项式扩展式就变成了

\hat{y}=W_{0}+W_{1}Z_{1}+W_{2}Z_{2}+W_{3}Z_{3}+W_{4}Z_{4}+W_{5}Z_{5}

源于:https://blog.csdn.net/qq_42442369/article/details/86506233

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值