概率密度函数可用于描述连续数据。通过它可以求出一个数据范围内的某个连续变量的概率。
概率密度通过面积标示概率大小。
从图中直接读出概率数值仅适用于离散概率的求解。
处理连续数据时,所计算的是一个数值范围的概率。
正态分布
正态(Normal)分布又叫高斯分布,它是连续型概率分布。
通过和
进行定义。
指出曲线的中央位置,
指出分散性。
以上是X~N(0,1),X~N(0,2),X~N(0,4)的正态分布图,可以看出当越大,正态分布曲线越扁平、越宽。
以上是X~N(0,1),X~N(1,1)的正态分布图,可以看出指出中央位置。
正态概率计算方法步骤:
1.确定分布与范围。
2.标准化。
Z=(X-)/
.
3.查找标准正态分布概率表
情况 | 分布 | 条件 |
---|---|---|
X+Y | X与Y为独立变量 | |
X-Y | X与Y为独立变量 | |
aX+b | a,b为常量 | |
X1+X2+……Xn | X1,X2,……Xn为X的独立观察结果 | |
X的正态近似 X~B(n,p) | np>5,nq>5,需要连续性修正 | |
X的正态近似 X~Po( | X~N( |
需要连续性修正 |