正态分布

 

概率密度函数可用于描述连续数据。通过它可以求出一个数据范围内的某个连续变量的概率。

概率密度通过面积标示概率大小。

从图中直接读出概率数值仅适用于离散概率的求解。

处理连续数据时,所计算的是一个数值范围的概率。

 

正态分布X\sim N(\mu ,\sigma ^{2})

正态(Normal)分布又叫高斯分布,它是连续型概率分布。

通过\mu\sigma ^{2}进行定义。\mu指出曲线的中央位置,\sigma指出分散性。

以上是X~N(0,1),X~N(0,2),X~N(0,4)的正态分布图,可以看出当\sigma ^{2}越大,正态分布曲线越扁平、越宽。

以上是X~N(0,1),X~N(1,1)的正态分布图,可以看出\mu指出中央位置。

正态概率计算方法步骤:

1.确定分布与范围。X\sim N(\mu ,\sigma ^{2})

2.标准化。X\sim N(\mu ,\sigma ^{2})\rightarrow Z\sim N(0,1)

Z=(X-\mu)/\sigma.

3.查找标准正态分布概率表


情况分布条件

X+Y

X\sim N(\mu_{x} ,\sigma_{x}^{2}),Y\sim N(\mu_{y} ,\sigma_{y}^{2})

X+Y\sim N(\mu_{x}+\mu_{y},\sigma_{x} ^{2}+\sigma_{y} ^{2})X与Y为独立变量

X-Y

X\sim N(\mu_{x} ,\sigma_{x}^{2}),Y\sim N(\mu_{y} ,\sigma_{y}^{2})

X-Y\sim N(\mu_{x}-\mu_{y},\sigma_{x} ^{2}+\sigma_{y} ^{2})X与Y为独立变量

aX+b

X\sim N(\mu ,\sigma ^{2})

aX+b\sim N(a\mu+b ,a^{2}\sigma ^{2})a,b为常量

X1+X2+……Xn

X\sim N(\mu ,\sigma ^{2})

X_{1}+X_{2}+\cdots +X_{n}\sim N(n\mu ,n\sigma ^{2})X1,X2,……Xn为X的独立观察结果

X的正态近似

X~B(n,p)

X\sim N(np,npq)np>5,nq>5,需要连续性修正

X的正态近似

X~Po(\lambda)

X~N(\lambda,\lambda)

\lambda>15,

需要连续性修正

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值