一 , 概述
在现代密码学诞生以前,就已经有很多的加密方法了。例如,最古老的斯巴达加密棒,广泛应用于公元前7世纪的古希腊。16世纪意大利数学家卡尔达诺发明的栅格密码,基于单表代换的凯撒密码、猪圈密码,基于多表代换的维吉尼亚密码,二战中德军广泛使用的恩格玛加密机….但最终都找到了有效的破解算法。
现代密码学的诞生标志是1977年1月由美国国家标准局公布的数据加密标准(Data Encryption Standard,DES)。
在经过20多年之后,为适应现代的安全要求,2000年美国国家和标准技术协会筛选和评测出了被称为AES(Advanced Encryption Standard)的加密算法作为新的加密标准。目前,AES已被广泛使用,且未发现致命缺陷。到目前为止,AES是一个安全的加密算法。
然而,在加密算法之外,面临一个问题,那就是:秘钥的分发。就是说,解密方如何获得加密方的秘钥呢? 从而出现了:对称加密和非对称加密。
二,对称加密和非对称加密
1. 对称加密
对称加密指的就是加密和解密使用同一个秘钥,所以叫做对称加密。对称加密只有一个秘钥,作为私钥。
常见的对称加密算法:DES,AES,3EDS等等。
2. 非对称加密
非对称加密指的是:加密和解密使用不同的秘钥,一把作为公开的公钥,另一把作为私钥。公钥加密的信息,只有私钥才能解密。私钥加密的信息,只有公钥才能解密。
常见的非对称加密算法:RSA,ECC
3. 区别
对称加密算法相比非对称加密算法来说,加解密的效率要高得多。但是缺陷在于对于秘钥的管理上,以及在非安全信道中通讯时,密钥交换的安全性不能保障。所以在实际的网络环境中,会将两者混合使用.
例如针对C/S模型,
1. 服务端计算出一对秘钥pub/pri。将私钥保密,将公钥公开。
2. 客户端请求服务端时,拿到服务端的公钥pub。
3. 客户端通过AES计算出一个对称加密的秘钥X。 然后使用pub将X进行加密。
4. 客户端将加密后的密文发送给服务端。服务端通过pri解密获得X。
5. 然后两边的通讯内容就通过对称密钥X以对称加密算法来加解密。
三,RSA原理
我们先来看这样一些基础知识,并且以下我们讨论全都是整数:
整数运算
在整数运算中 我们定义一个整数 x ,那么他的负数为- x ,并且有 x +(- x )=0;
他的倒数为 x−1 , 并且有 x×x−1 =1;
同余运算
有整数a,b,正整数m。 假如a除以m余b。我们称为a模m同余b,模数为m。并且记为 a≡b(modm) ,例如10除以3余1
我们称10模3同余1,记为 10≡1(mod3) 。
我们分别讨论模数为合数和质数情况下,基于同余运算的负数和倒数。
1. 当模数为合数 n 时
简单起见,我们讨论当 n 为10的情况,10是两个质数乘积
当模数为10的时候,参与运算的都是小于10的数。因为大于10的数除模取余之后都会小于10,所以只需要考虑小于模的数。
那么在同余运算中
一个小于10的数a,他的负数是什么? 也就是说使得 a+(−a)≡0(mod10) ; 那就是 n−a ;
有 a+(n−a)≡a+(−a)+n≡n≡(modn) 。 当 n=10 的时候 ,有如下表
a | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
−a | 0 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
那么, a 的倒数 a−1 是什么呢? 它要使得 a×a−1 在模数为n的情况下等于1,即 a×a−1≡1(modn)
当 n=10 的时候我们会发现,对于有的数我们可以找到它的倒数,有的数却找不到
例如当 a=3 ,我们可以找到7,使得 3×7≡21≡1(mod10) ;
而当a=4的时候,我们有 4×0=0 , 4×1=4 , 4×2=8 , 4×3=12 , 4×4=16 , 4×5=20 , 4×6=24 , 4×7=28 , 4×8=32 , 4×9=36 ,在模10的情况下,都不会等于1。
我们对于所有小于10的 a 都找他的倒数 a−1 ,有下表
a | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
a−1 | 9 | 不存在 | 7 | 不存在 | 不存在 | 不存在 | 3 | 不存在 | 1 |
有什么规律呢?
数学界已证明:当 a<n 时,只有当 a 和 n 互质才能找到 a−1 。 同时还有以下结论,当 n=p×q ,且 p 和 q 都为质数时,所有小于 n 的数中,能找到倒数的数的个数为 (p−1)×(q−1) 个。如果n有更多的质因子,那么计算会更复杂点。
我们把所有小于n,并且能和n互质的数的总个数记为一个函数 φ(n) ,这个函数叫做欧拉函数。例
即当 n=p×q ,且 p 和 q 都为质数时,有 φ(n)=(p−1)×(q−1) , 那么就有 φ(10)=(2−1)×(5−1)=4
同时这些数还有以下两个有趣的情况
-
这些数之间进行互乘的同余运算,结果还是这些数。
例如对于1: 1×1≡1(mod10) , 1×3≡3(mod10) , 1×7≡7(mod10) , 1×9≡9(mod10)
对于3: 3×1≡3(mod10) , 3×3≡9(mod10) , 3×7≡1(mod10) , 3×9≡7(mod10)
对于7: 7×1≡7(mod10) , 7×3≡1(mod10) , 7×7≡9(mod10) , 7×9≡3(mod10)
对于9: 9×1≡9(mod10) , 9×3≡7(mod10) , 9×7≡3(mod10) , 9×9≡1(mod10)
如果一些数在互相运算之后,得到的结果还是这些数中,我们称这些数在这个运算条件下具有封闭性。
-
对这些数进行求幂运算,并且模10,结果如下表
a | 1 | 3 | 7 | 9 |
---|---|---|---|---|
a0 | 1 | 1 | 1 | 1 |
a1 | 1 | 3 | 7 | 9 |
a2 | 1×1=1 | 3×3=9 | 7×7=9 | 9×9=1 |
a3 | 1×1×1=1 | 3×3×3=7 | 7×7×7=3 | 9×9×9=9 |
a4 | 1×1×1×1=1 | 3×3×3×3=1 | 7×7×7×7=1 | 1×1×1×1=1 |
其中,
-
我们规定 a0=1
-
所有 aφ(10) 的结果都为1,即有 aφ(n)=1
-
对于3和7来说,他们的 a0 、 a1 、 a2 、 a3 刚好把1,3,7,9各得到了一遍。到 a4 时刚好又回到了1,如果大于4之后,又会开始循环
在模n的情况下一定能找到一个数 g ,使得 g0 、 g1 、 g2 、…… gφ(n)−1 刚好把所有与n互质并且小于n的数各得到一遍。我们把满足这种条件的数称为 生成元。
2. 当模数为质数 p 的时候
当模 p 为质数的时候,我们假设 p=7 时。
同样求小于 p 的数 a 的负数 −a 有如下表
a | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
−a | 0 | 6 | 5 | 4 | 3 | 2 | 1 |
而求 a 的倒数时,因为p是质数,所有小于 p 的数都和它互质。所以,所有小于 p 的数 a 都能找到它的倒数 −a 。它的欧拉函数 φ(n)=p−1 。
如下表
a | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
a−1 | 1 | 4 | 5 | 2 | 3 | 6 |
它同样有模数为合数 n 时的性质
- 这些数在同余运算规则下进行乘法运算,同样具有封闭性
- 任意的 a 求幂依然满足 aφ(n)=1 的规则,且同样有生成元
3. 离散对数问题
前面我们得到了有这么一个结论:
在模n的情况下一定能找到一个数 g ,使得 g0 , g1 , g2 、…… gφ(n)−1 刚好把所有与n互质并且小于n的数各得到一遍。我们把满足这种条件的数称为 生成元。
那么,在模 n 的条件下,给定它的生成元 g ,以及一个小于 n 的正整数 a 。通过一个叫做同余幂的算法能够快速的算出 ga 的值,我们把算得的结果记为 b 。 即我们在模 n 的条件下,能够快速的算出 b=ga 的值。
由于生成元的特性,我们知道,在模 n 的条件下,给定生成元 g ,以及 b 的值,一定存在一个小于 n 的正整数 a ,使得 b=ga 。那么如何求a的值?
我们发现,这个问题没有任何规律。例如,当n=11,g=2时,有如下表
g | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
---|---|---|---|---|---|---|---|---|---|---|---|
b=ga | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 1 |
a | 0 | 1 | 8 | 2 | 4 | 9 | 7 | 3 | 6 | 5 | 10 |
在实数计算中,我们知道当 b=ga 时, a=logbg 。然而这个计算在模 n 的条件下非常困难。这样一个问题被称为离散对数问题。在目前的技术条件下,这是一个极为困难的计算。当这个 n 值达到十进制两三百位时,即便是有大型计算机的情况下,所要花费的时间依然是个天文数字。
4.RSA原理
当 n=p×q , p 与 q 是两个大质数。你只知道n,想要计算 p 和 q ,这也是一个世界性的极为困难的数学难题。RSA的基础就是基于的n的两个质数分解难题。
具体过程如下:
-
service 端选择两个大质数 p 和 q ,求得 n=p×q 。接下来,service选择一个与 φ(n) 互质的数e,并计算 s=e−1(modφ(n)) 。即在模 φ(n) 的条件下,计算出当 e−1 的值。其中 φ(n)=(p−1)×(q−1)
我们知道, e 与 φ(n) 互质,所以一定存在 e−1 , 这一步,service 就算出了公钥和私钥,其中,公钥为( n , e ),私钥为 s
-
接下来,client可以在非安全信道请求service获得公钥。假定client需要发送的内容为m,计算 D=me(modn) ,然后把D发送给service
-
service收到D之后,计算 Ds=me(e−1)=me×e−1=m(modn) .
其中,在不安全信道中传输的是 n 和 e 。然而, p 和 q 只有service才知道,即便别人获得了n,基于质数分解难题,他无法算出 p 和 q ,也就无法算出私钥来揭秘被加密的消息。