一、面试开场
面试官坐在正中央,表情严肃地看着面前的两位应聘者。一位是看起来有些嘻嘻哈哈的张小明,另一位则是眼神坚定的Kevin。
二、面试过程
(一)第一轮提问
面试官:咱们先从简单的开始。在JUC里,volatile
关键字有什么作用呢? 张小明:(挠挠头)这个我知道哦,volatile
就是让变量在多线程之间可见嘛。就像两个人在一个房间里,一个人改了东西,另一个人马上能看到。 Kevin:(微笑着)没错,volatile
主要确保了变量的修改会立即对其他线程可见。它主要是通过禁止指令重排序和强制将修改后的值刷新到主内存来实现的。在源码中,当一个变量被声明为volatile
时,在读操作时,会先从主内存读取最新值到工作内存;写操作时,会立即将值刷新到主内存。这在像单例模式的双重检查锁这种业务场景中就很有用,能保证实例的可见性。
(二)第二轮提问
面试官:那volatile
能保证原子性吗? 张小明:(有点犹豫)这个……应该不能吧,我记得原子性好像得用锁之类的。 Kevin:对的,volatile
不能保证原子性。比如说i++
这个操作,它实际上包含了读取、修改、写入三个步骤,volatile
无法保证这三个步骤的原子性。在JUC中,如果想要保证原子性,可以使用AtomicInt
eger
类。它的底层实现是基于CAS(Compare - And - Swap)操作。在源码中,AtomicInt
eger
有一个value
字段,通过Unsafe
类的compareAn
dSwapInt
方法来实现原子性的更新操作。在像统计网站访问量这种高并发的业务场景下,使用AtomicInt
eger
就很合适。
(三)第三轮提问
面试官:那你能说说CAS的原理吗? 张小明:(眼睛一亮)这个我知道一点,CAS就是比较然后交换嘛。 Kevin:CAS的原理是这样的。它包含三个操作数,内存位置(V)、预期原值(A)和新值(B)。首先检查内存位置V中的值是否等于预期原值A,如果是,就将内存位置V的值更新为新值B,如果不是,就不做任何操作。在源码中,Unsafe
类提供了底层的硬件级别的原子操作来实现CAS。在像自旋锁这种业务场景中,CAS被广泛应用。例如,在获取锁的时候,线程会通过CAS操作尝试将锁的状态从0(未锁定)修改为1(已锁定),如果失败就不断重试。
(四)第四轮提问
面试官:那JUC里的Reentrant
Lock
和synchroni
zed
有什么区别呢? 张小明:(挠挠腮帮子)嗯……synchroni
zed
是关键字,Reentrant
Lock
是个类吧。synchroni
zed
用起来简单点,Reentrant
Lock
感觉更灵活。 Kevin:synchroni
zed
是Java的关键字,它是基于JVM层面的锁实现。在获取锁失败时,线程会被阻塞并放入等待队列。而Reentrant
Lock
是JUC中的一个类,它基于AQS(AbstractQueuedSynchronizer)实现。Reentrant
Lock
具有更多的功能,比如可中断的锁获取、公平锁和非公平锁的选择等。在源码中,Reentrant
Lock
内部维护了一个Sync
对象,通过这个对象来实现锁的获取和释放。在像银行账户转账这种需要更灵活控制锁的业务场景下,Reentrant
Lock
就比synchroni
zed
更有优势。
(五)第五轮提问
面试官:那AQS的原理是什么呢? 张小明:(有点懵)这个……我不太清楚呢。 Kevin:AQS是一个用于构建锁和同步器的框架。它内部维护了一个FIFO队列,用来存放等待获取锁的线程。当一个线程尝试获取锁失败时,就会被加入到这个队列中。AQS通过一个state
变量来表示同步状态,在源码中,子类通过重写tryAcquir
e
、tryReleas
e
等方法来实现具体的锁逻辑。像Reentrant
Lock
就是基于AQS实现的独占锁,而Semaphore
是基于AQS实现的共享锁。
(六)第六轮提问
面试官:那CountDown
Latch
是怎么基于AQS实现的呢? 张小明:(眼睛转了转)这个我知道一点,CountDown
Latch
是让一个线程等别的线程执行完再执行吧。 Kevin:对的。CountDown
Latch
内部维护了一个state
变量,这个变量表示还需要等待的线程数量。当一个线程调用countDown
方法时,state
就会减1。当state
变为0时,那些在等待的线程就会被唤醒。在源码中,CountDown
Latch
通过继承AQS,并重写相关方法来实现这种逻辑。在像多个子任务完成后主线程才进行汇总的业务场景下,CountDown
Latch
就非常有用。
(七)第七轮提问
面试官:那CyclicBar
rier
又有什么不同呢? 张小明:(挠挠头)这个……我觉得CyclicBar
rier
是可以循环使用的吧。 Kevin:没错。CyclicBar
rier
主要是让一组线程互相等待,直到所有线程都到达某个屏障点后再一起继续执行。与CountDown
Latch
不同的是,CyclicBar
rier
可以重复使用。在源码中,CyclicBar
rier
也是基于AQS实现的,它内部维护了一个Generatio
n
对象来表示当前的“代”,当所有线程都到达屏障点后,就会开启新的一代。在像多线程分块计算数据,最后合并结果的场景下,CyclicBar
rier
就很合适。
(八)第八轮提问
面试官:那JUC里的线程池是怎么回事呢? 张小明:(有点紧张)我知道有几种创建线程池的方法,像Executors
类里的一些方法。 Kevin:JUC中的线程池主要通过ThreadPoo
lExecutor
类来实现。它有几个重要的参数,比如核心线程数、最大线程数、空闲线程存活时间等。在源码中,当有任务提交时,如果当前线程数小于核心线程数,就会创建新的线程来执行任务;如果大于核心线程数,就会将任务放入工作队列。如果工作队列满了,就会根据拒绝策略来处理任务。像在高并发的Web服务器中,合理配置线程池可以提高系统的性能和稳定性。
(九)第九轮提问
面试官:那线程池中的工作队列有哪些选择呢? 张小明:(想了想)有ArrayBloc
kingQueue
和LinkedBlo
ckingQueue
吧。 Kevin:对的。ArrayBloc
kingQueue
是一个有界队列,它在创建时需要指定容量。当队列满时,新的任务就会被阻塞或者根据拒绝策略处理。LinkedBlo
ckingQueue
是一个无界队列(实际上有一个默认的最大容量,但很大),它可以容纳大量的任务。在源码中,不同的工作队列对线程池的任务调度和性能有着不同的影响。例如,在任务量可预测且相对稳定的场景下,ArrayBloc
kingQueue
可能更合适;而在任务量波动较大的场景下,LinkedBlo
ckingQueue
可能更好。
(十)第十轮提问
面试官:最后一个问题。如果让你设计一个高并发的任务调度系统,你会怎么利用JUC中的工具? 张小明:(有点不知所措)我……我可能会用线程池吧,其他的就不是很清楚了。 Kevin:如果要设计一个高并发的任务调度系统,我会首先考虑使用线程池来管理任务的执行线程。根据任务的特性和系统的资源情况,合理配置线程池的参数。对于任务的调度顺序和并发控制,可以使用Scheduled
ThreadPoolExecutor
来实现定时任务和周期性任务。如果需要多个任务之间的同步等待,可以使用CountDown
Latch
或者CyclicBar
rier
。同时,为了保证任务执行过程中的数据一致性,可能会用到Reentrant
Lock
或者synchroni
zed
。在源码层面,要深入理解这些工具的实现原理,以便更好地进行定制和优化。
面试官:嗯,今天的面试就到这里吧。张小明,你可以先回家等通知了。Kevin,你表现得不错,我们会在近期内给你答复的。
三、答案详细解析
(一)volatile
- 业务场景:单例模式的双重检查锁。在创建单例对象时,为了保证在多线程环境下只有一个实例被创建,需要使用
volatile
关键字修饰单例对象。因为如果不使用volatile
,可能会出现指令重排序的问题,导致其他线程获取到一个未完全初始化的对象。
- 技术点:
volatile
通过禁止指令重排序和强制刷新主内存来保证变量的可见性。在读操作时,会先从主内存读取最新值到工作内存;写操作时,会立即将值刷新到主内存。
(二)原子性
- 业务场景:统计网站访问量。在高并发的情况下,多个用户同时访问网站,需要对访问量进行计数。如果使用普通的变量进行计数,可能会出现并发问题,导致计数不准确。而
AtomicInt
eger
基于CAS操作可以保证计数的原子性。
- 技术点:CAS操作包含三个操作数:内存位置(V)、预期原值(A)和新值(B)。通过比较内存位置的值是否等于预期原值,如果是则更新为新值,否则不做操作。在源码中,
Unsafe
类提供了底层的硬件级别的原子操作来实现CAS。
(三)Reentrant
Lock
与synchroni
zed
- 业务场景:银行账户转账。在进行转账操作时,需要保证同一时间只有一个线程可以对账户进行操作,以避免出现并发问题导致账户余额错误。
Reentrant
Lock
相比synchroni
zed
具有更多的功能,如可中断的锁获取、公平锁和非公平锁的选择等。
- 技术点:
synchroni
zed
是基于JVM层面的锁实现,获取锁失败时线程会被阻塞放入等待队列。Reentrant
Lock
基于AQS实现,内部维护了一个Sync
对象,通过重写tryAcquir
e
、tryReleas
e
等方法来实现具体的锁逻辑。
(四)AQS原理
- 业务场景:构建自定义的同步器。例如,实现一个简单的独占锁或者共享锁。AQS提供了一个框架,通过维护一个FIFO队列和一个
state
变量来管理线程的同步状态。
- 技术点:AQS内部维护一个FIFO队列存放等待线程,通过
state
变量表示同步状态。子类通过重写tryAcquir
e
、tryReleas
e
等方法来实现具体的锁逻辑。
(五)CountDown
Latch
- 业务场景:多线程分块计算数据,最后合并结果。当多个线程分别完成自己的计算任务后,需要等待所有线程都完成后,主线程再进行结果的合并。
CountDown
Latch
可以让一个线程等待其他线程执行完再执行。
- 技术点:
CountDown
Latch
内部维护一个state
变量表示还需等待的线程数量,调用countDown
方法时state
减1,当state
为0时唤醒等待线程,它是基于AQS实现的。
(六)CyclicBar
rier
- 业务场景:多线程分阶段处理任务,每个阶段都需要所有线程都完成后再进入下一阶段。与
CountDown
Latch
不同,CyclicBar
rier
可以循环使用。
- 技术点:
CyclicBar
rier
基于AQS实现,内部维护Generatio
n
对象表示当前“代”,当所有线程到达屏障点后开启新的一代。
(七)线程池
- 业务场景:高并发的Web服务器。为了提高系统的性能和稳定性,需要合理地管理线程资源,使用线程池来处理大量的并发请求。
- 技术点:
ThreadPoo
lExecutor
通过核心线程数、最大线程数、空闲线程存活时间等参数来管理线程。任务提交时,根据不同情况创建新线程、放入工作队列或者根据拒绝策略处理。
(八)工作队列
- 业务场景:任务量可预测且稳定的系统可以使用
ArrayBloc
kingQueue
,任务量波动大的系统可以使用LinkedBlo
ckingQueue
。
- 技术点:
ArrayBloc
kingQueue
是有界队列,创建时指定容量,队列满时任务会被阻塞或按拒绝策略处理;LinkedBlo
ckingQueue
是无界队列(实际有较大默认容量),可容纳大量任务。
(九)任务调度系统设计
- 业务场景:设计一个高并发的任务调度系统,需要考虑任务的定时执行、并发控制、数据一致性等问题。
- 技术点:利用线程池管理任务执行线程,根据需求选择合适的任务调度方式(如
Scheduled
ThreadPoolExecutor
),使用同步工具(如CountDown
Latch
、CyclicBar
rier
)进行任务间的同步,使用锁(如Reentrant
Lock
、synchroni
zed
)保证数据一致性。