在现代开发中,特别是处理大量并发任务时,如何高效地管理这些任务并避免系统崩溃或阻塞是一个非常重要的挑战。在这篇文章中,我们将深入探讨如何使用 Python 的 asyncio
和 aioredis
实现一个高效的 worker,按需获取任务,防止系统陷入僵死或阻塞状态。
什么是 Worker?
简单来说,Worker 是一个专门用于处理任务的程序或线程。特别是在高并发场景下,worker 需要能够快速地获取新任务、处理任务,并且在出现异常时能够优雅地恢复,避免整个系统崩溃。
使用 asyncio
实现高效 Worker
在这篇文章中,我们将会用 asyncio
来实现一个支持高并发的 Worker。asyncio
是 Python 标准库中的一个模块,用于编写异步代码。通过 asyncio
,我们可以高效地管理大量并发任务,避免阻塞系统。
Worker 的初始化
首先,我们来看 SearchWorker
类的初始化部分。这个类的主要目的是从 Redis 中获取任务,并使用指定的并发数量来处理这些任务。初始化时,我们需要设置 Redis 连接、任务队列名称、并发任务数量,以及任务的超时时间。
class SearchWorker:
def __ini