分布式CAP原则
目录
什么是CAP
- Consistency (一致性):
- 一致性是指“all nodes see the same data at the same time”,即更新操作成功并返回客户端后,所有节点在同一时间的数据完全一致,这就是分布式的一致性。一致性的问题在并发系统中不可避免,对于客户端来说,一致性指的是并发访问时更新过的数据如何获取的问题。从服务端来看,则是更新如何复制分布到整个系统,以保证数据最终一致。
- Availability (可用性):
- 可用性指“Reads and writes always succeed”,即服务一直可用,而且是正常响应时间。好的可用性主要是指系统能够很好的为用户服务,不出现用户操作失败或者访问超时等用户体验不好的情况。
- Partition Tolerance (分区容错性):
- 分区容错性是说“the system continues to operate despite arbitrary message loss or failure of part of the system”,即分布式系统在遇到某节点或网络分区故障的时候,仍然能够对外提供满足一致性或可用性的服务。
- 在分布式系统的设计中,没有一种设计可以同时满足Consistency (一致性)、Availability (可用性)、Partition Tolerance (分区容错性)三个个特性。
- 为什么?
- 在CAP理论中,分布式系统要保障整体的服务,因此(Partition tolerance)分区容错性必然存在。那么为什么CA不能同时存在?因为分区之间的通信可能通信失败,即假设网络一直不可靠。
为什么CAP只能满足其中两个
- 在CAP理论中,分布式系统要保障整体的服务,因此(Partition tolerance)分区容错性必然存在。那么为什么CA不能同时存在?因为分区之间的通信可能通信失败。
业务场景权衡(要A还是要C)
(要A(Availability (可用性))还是要C(Consistency (一致性)))
- CP:为了保证一致性,不能访问未同步完成的节点,也就失去了部分可用性;
- AP:为了保证可用性,允许读取所有节点的数据,但是数据可能不一致。
常见的Java分布式集群的CAP原则
- Zookeeper(CP): 集群 Leader 挂了会重新选举,此时暂停对外服务。
- Eureka集群(AP): 发现连接失败,则会自动切换至其他的节点,只要有一台还在,就能保证注册服务可用(保证可用性),只不过查到的信息可能不是最新的(不保证一致性)
- Nacos集群(AP): Leader 挂了,不影响服务之间互相调用、不影响服务注册、不影响服务正常启动拉取配置文件。
- Redis集群(AP): Sentinel 模式如果 master 数据未及时同步到 slave,正常运行,不会阻塞等到数据同步到 slave才恢复。