一篇文章读懂分布式CAP原则@杨章隐

分布式CAP原则

目录

什么是CAP

为什么CAP只能满足其中两个

业务场景权衡(要A还是要C)

常见的Java分布式集群的CAP原则


什么是CAP

  • Consistency (一致性):
    • 一致性是指“all nodes see the same data at the same time”,即更新操作成功并返回客户端后,所有节点在同一时间的数据完全一致,这就是分布式的一致性。一致性的问题在并发系统中不可避免,对于客户端来说,一致性指的是并发访问时更新过的数据如何获取的问题。从服务端来看,则是更新如何复制分布到整个系统,以保证数据最终一致。
  • Availability (可用性):
    • 可用性指“Reads and writes always succeed”,即服务一直可用,而且是正常响应时间。好的可用性主要是指系统能够很好的为用户服务,不出现用户操作失败或者访问超时等用户体验不好的情况。
  • Partition Tolerance (分区容错性):
    • 分区容错性是说“the system continues to operate despite arbitrary message loss or failure of part of the system”,即分布式系统在遇到某节点或网络分区故障的时候,仍然能够对外提供满足一致性或可用性的服务。
  • 在分布式系统的设计中,没有一种设计可以同时满足Consistency (一致性)、Availability (可用性)、Partition Tolerance (分区容错性)三个个特性。
  • 为什么?
    • CAP理论中,分布式系统要保障整体的服务,因此(Partition tolerance)分区容错性必然存在。那么为什么CA不能同时存在?因为分区之间的通信可能通信失败,即假设网络一直不可靠。

为什么CAP只能满足其中两个

  • CAP理论中,分布式系统要保障整体的服务,因此(Partition tolerance)分区容错性必然存在。那么为什么CA不能同时存在?因为分区之间的通信可能通信失败。

业务场景权衡(要A还是要C)

(要A(Availability (可用性))还是要C(Consistency (一致性)))
  • CP:为了保证一致性,不能访问未同步完成的节点,也就失去了部分可用性;
  • AP:为了保证可用性,允许读取所有节点的数据,但是数据可能不一致。

常见的Java分布式集群的CAP原则

  1. Zookeeper(CP): 集群 Leader 挂了会重新选举,此时暂停对外服务。
  2. Eureka集群(AP): 发现连接失败,则会自动切换至其他的节点,只要有一台还在,就能保证注册服务可用(保证可用性),只不过查到的信息可能不是最新的(不保证一致性)
  3. Nacos集群(AP): Leader 挂了,不影响服务之间互相调用、不影响服务注册、不影响服务正常启动拉取配置文件。
  4. Redis集群(AP): Sentinel 模式如果 master 数据未及时同步到 slave,正常运行,不会阻塞等到数据同步到 slave才恢复。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杨章隐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值