1. 有50枚硬币,可能包括4种类型:1元,5角,1角,5分。
已知总价值为20元。求各种硬币的数量。
比如:2,34,6,8 就是一种答案。
而 2,33,15,0 是另一个可能的答案,显然答案不唯一。
你的任务是确定类似这样的不同的方案一共有多少个(包括已经给出的2个)?
{
可以看出这里的硬币数量和存在着 1元×20+5角×10+1角×2+5分=400分 ,因此可以推断出循环中的各硬币的数目范围
}
答案:
2.四平方和(程序设计)
四平方和的定理又称拉格朗日定理:每个正整数都可以表示至多4个正整数的平方和。如果把0包括进去,就可以表示为4个数的平方和。
比如:
5=0^2+0^2+1^2+2^2 7=1^2+1^2+1^2+2^2
对于一个给定的正整数,可能存在多种平方和的表示法。要求你4个数排序:
0<=a<=b<=c<=d
并对所有的可能表示法按 a,b,c,d为联合主键升序排列,最后输出第一个表示法。程序输入为一个正整数N(N<5000000),要求输出4个非负整数