蓝桥杯题目搜集

这篇博客介绍了蓝桥杯竞赛中的两个题目:一是关于50枚不同面值硬币组成的20元组合,探讨了不同组合方案的数量;二是四平方和问题,解释了如何根据拉格朗日定理找到正整数的平方和表示,并给出了排序要求。第三个题目是区间第K大的数,但尚未给出解决方案。
摘要由CSDN通过智能技术生成

1.      有50枚硬币,可能包括4种类型:1元,5角,1角,5分。

已知总价值为20元。求各种硬币的数量。
比如:2,34,6,8 就是一种答案。
而 2,33,15,0 是另一个可能的答案,显然答案不唯一。
你的任务是确定类似这样的不同的方案一共有多少个(包括已经给出的2个)?
{

可以看出这里的硬币数量和存在着 1元×20+5角×10+1角×2+5分=400分   ,因此可以推断出循环中的各硬币的数目范围

}

答案:

2.四平方和(程序设计)

四平方和的定理又称拉格朗日定理:每个正整数都可以表示至多4个正整数的平方和。如果把0包括进去,就可以表示为4个数的平方和。
比如:
   5=0^2+0^2+1^2+2^2         7=1^2+1^2+1^2+2^2
对于一个给定的正整数,可能存在多种平方和的表示法。要求你4个数排序:

   0<=a<=b<=c<=d

并对所有的可能表示法按 a,b,c,d为联合主键升序排列,最后输出第一个表示法。程序输入为一个正整数N(N<5000000),要求输出4个非负整数࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值