题解:SP5976 TRGRID - Traversing Grid

题目传送门

思路

  1. 注意数据范围 1 ≤ n , m ≤ 1 0 9 1 \le n,m\le 10^9 1n,m109,所以肯定不能用暴力模拟的方法。
  2. 观察样例考虑两种大情况: n = m n = m n=m n ≠ m n \ne m n=m
  3. n = m n=m n=m 时分两种小情况:
  • n   m o d   2 = 0 n \bmod 2=0 nmod2=0 时,此时走到最后一定剩下一个 2 × 2 2 \times2 2×2 的正方形,必然朝左(如图中绿色部分)。
  • n   m o d   2 = 1 n \bmod 2=1 nmod2=1 时,同理,走到最后一定剩下一个 1 × 1 1\times 1 1×1 的正方形,必然朝右。
  1. n ≠ m n \ne m n=m 时又分两种小情况:
  • min ⁡ ( n , m )   m o d   2 = 0 \min(n,m) \bmod2=0 min(n,m)mod2=0 时,此时走完剩下一个长为 2 2 2 的倍数的长方形(如图中绿色部分),只需判断这个长方形的朝向,通过比较 n n n m m m 的大小即可,如果 m > n m>n m>n 必定朝左,否则朝上。
  • min ⁡ ( n , m )   m o d   2 = 1 \min(n,m) \bmod2=1 min(n,m)mod2=1,与第一种情况同理,走完只剩下一个宽为 1 1 1 的长方形,如果 m > n m>n m>n 必定朝右,否则朝下。

代码

#include<bits/stdc++.h>
#define int long long//注意开long long
using namespace std;
int t,n,m,x;
signed main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	cin>>t;
	while(t--)
	{
		cin>>n>>m;
		x=min(n,m);
		if(n==m)
		{
			if(n%2==0)
				cout<<"L\n";
			else
				cout<<"R\n";
		}
		else 
		{
			if(x%2==1)
			{
				if(m<n)
					cout<<"D\n";
				else
					cout<<"R\n";
			}
			else
			{
				if(m<n)
					cout<<"U\n";
				else
					cout<<"L\n";
			}
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值