Python 为什么性能差
当我们提到一门编程语言的效率时:通常有两层意思,第一是开发效率,这是对程序员而言,完成编码所需要的时间;另一个是运行效率,这是对计算机而言,完成计算任务所需要的时间。编码效率和运行效率往往是鱼与熊掌的关系,是很难同时兼顾的。不同的语言会有不同的侧重,python语言毫无疑问更在乎编码效率,life is short,we use python。
虽然使用python的编程人员都应该接受其运行效率低的事实,但python在越多越来的领域都有广泛应用,比如科学计算 、web服务器等。程序员当然也希望python能够运算得更快,希望python可以更强大。
首先,python相比其他语言具体有多慢,这个不同场景和测试用例,结果肯定是不一样的。这个网址给出了不同语言在各种case下的性能对比,这一页是python3和C++的对比,下面是两个case:
从上图可以看出,不同的case,python比C++慢了几倍到几十倍。
Python运算效率低,具体是什么原因呢,下列罗列一些
-
Python是动态语言
一个变量所指向对象的类型在运行时才确定,编译器做不了任何预测,也就无从优化。举一个简单的例子: r = a + b。 a和b相加,但a和b的类型在运行时才知道,对于加法操作,不同的类型有不同的处理,所以每次运行的时候都会去判断a和b的类型,然后执行对应的操作。而在静态语言如C++中,编译的时候就确定了运行时的代码。
另外一个例子是属性查找,关于具体的查找顺序在《python属性查找》中有详细介绍。简而言之,访问对象的某个属性是一个非常复杂的过程,而且通过同一个变量访问到的python对象还都可能不一样(参见Lazy property的例子)。而在C语言中,访问属性用对象的地址加上属性的偏移就可以了。
-
Python是解释执行
但是不支持JIT(just in time compiler)。虽然大名鼎鼎的google曾经尝试Unladen Swallow 这个项目,但最终也折了。
-
Python中一切都是对象
每个对象都需要维护引用计数,增加了额外的工作。
-
Python GIL
GIL是Python最为诟病的一点,因为GIL,python中的多线程并不能真正的并发。如果是在IO bound的业务场景,这个问题并不大,但是在CPU BOUND的场景,这就很致命了。所以笔者在工作中使用python多线程的情况并不多,一般都是使用多进程(pre fork),或者在加上协程。即使在单线程,GIL也会带来很大的性能影响,因为python每执行100个opcode(默认,可以通过sys.setcheckinterval()设置)就会尝试线程的切换,具体的源代码在ceval.c::PyEval_EvalFrameEx。
-
垃圾回收
这个可能是所有具有垃圾回收的编程语言的通病。python采用标记和分代的垃圾回收策略,每次垃圾回收的时候都会中断正在执行的程序(stop the world),造成所谓的顿卡。infoq上有一篇文章,提到禁用Python的GC机制后,Instagram性能提升了10%。感兴趣的读者可以去细读。
02
代码Pythonic
我们都知道 过早的优化是罪恶之源,一切优化都需要基于profile。
但是,作为一个python开发者应该要Pythonic,而且pythonic的代码往往比non-pythonic的代码效率高一些,比如:
-
使用迭代器iterator,for example:
dict的iteritems 而不是items(同itervalues,iterkeys)
使用generator,特别是在循环中可能提前break的情况 -
判断是否是同一个对象使用 is 而不是 ==
-
判断一个对象是否在一个集合中,使用set而不是list
-
利用短路求值特性,把“短路”概率过的逻辑表达式写在前面。其他的lazy ideas也是可以的
-
对于大量字符串的累加,使用join操作
-
使用for else(while else)语法
-
交换两个变量的值使用: a, b = b, a
03
基于profile优化
即使我们的代码已经非常pythonic了,但可能运行效率还是不能满足预期。我们也知道80/20定律,绝大多数的时间都耗费在少量的代码片段里面了,优化的关键在于找出这些瓶颈代码。方式很多:到处加log打印时间戳、或者将怀疑的函数使用timeit进行单独测试,但最有效的是使用profile工具。
▍ 1. python profilers
对于python程序,比较出名的profile工具有三个:profile、cprofile和hotshot。
其中profile是纯python语言实现的,Cprofile将profile的部分实现native化,hotshot也是C语言实现,hotshot与Cprofile的区别在于:hotshot对目标代码的运行影响较小,代价是更多的后处理时间,而且hotshot已经停止维护了。
需要注意的是,profile(Cprofile hotshot)只适合单线程的python程序。对于多线程,可以使用yappi,yappi不仅支持多线程,还可以精确到CPU时间
对于协程(greenlet),可以使用greenletprofiler,基于yappi修改,用greenlet context hook住thread context
下面给出一段编造的”效率低下“的代码,并使用Cprofile来说明profile的具体方法以及我们可能遇到的性能瓶颈。
# -*- coding: UTF-8 -*-
from cProfile import Profile
import math
def foo():
return foo1()
def foo1():
return foo2()
def foo2():
return foo3()
def foo3():
return foo4()
def foo4():
return "this call tree seems ugly, but it always happen"
def bar():
ret = 0
for i in xrange(10000):
ret += i * i + math.sqrt(i)
return ret
def main():
for i in range(100000):
if i % 10000 == 0:
bar()
else:
foo()
if __name__ == '__main__':
prof = Profile()
prof.runcall(main)
prof.print_stats()
#prof.dump_stats('test.prof') # dump profile result to test.prof
运行结果如下:
对于上面的的输出,每一个字段意义如下:
ncalls 函数总的调用次数
tottime 函数内部(不包括子函数)的占用时间
percall (第一个) tottime/ncalls
cumtime 函数包括子函数所占用的时间
percall (第二个)cumtime/ncalls
filename:lineno(function) 文件:行号(函数)
代码中的输出非常简单,事实上可以利用pstat,让profile结果的输出多样化,具体可以参见官方文档:https://docs.python.org/2/library/profile.html
▍2. profile GUI tools
虽然Cprofile的输出已经比较直观,但我们还是倾向于保存profile的结果,然后用图形化的工具来从不同的维度来分析,或者比较优化前后的代码。
查看profile结果的工具也比较多,比如,visualpytune、qcachegrind、runsnakerun,本文用visualpytune做分析。对于上面的代码,按照注释生成修改后重新运行生成test.prof文件,用visualpytune直接打开就可以了,如下:
字段的意义与文本输出基本一致,不过便捷性可以点击字段名排序。左下方列出了当前函数的calller(调用者),右下方是当前函数内部与子函数的时间占用情况。上如是按照cumtime(即该函数内部及其子函数所占的时间和)排序的结果。
造成性能瓶颈的原因通常是高频调用的函数、单次消耗非常高的函数、或者二者的结合。在我们前面的例子中,foo就属于高频调用的情况,bar属于单次消耗非常高的情况,这都是我们需要优化的重点。
python-profiling-tools中介绍了qcachegrind和runsnakerun的使用方法,这两个colorful的工具比visualpytune强大得多。具体的使用方法请参考原文,下图给出test.prof用qcachegrind打开的结果
qcachegrind确实要比visualpytune强大。从上图可以看到,大致分为三部:。第一部分同visualpytune类似,是每个函数占用的时间,其中Incl等同于cumtime, Self等同于tottime。第二部分和第三部分都有很多标签,不同的标签标示从不同的角度来看结果,如图上所以,第三部分的“call graph”展示了该函数的call tree并包含每个子函数的时间百分比,一目了然。
▍3. profile 针对优化
知道了热点,就可以进行针对性的优化,而这个优化往往根具体的业务密切相关,没用万能钥匙,具体问题,具体分析。个人经验而言,最有效的优化是找产品经理讨论需求,可能换一种方式也能满足需求,少者稍微折衷一下产品经理也能接受。次之是修改代码的实现,比如之前使用了一个比较通俗易懂但效率较低的算法,如果这个算法成为了性能瓶颈,那就考虑换一种效率更高但是可能难理解的算法、或者使用dirty Flag模式。对于这些同样的方法,需要结合具体的案例,本文不做赘述。
接下来结合python语言特性,介绍一些让python代码不那么pythonic,但可以提升性能的一些做法
第一:减少函数的调用层次
每一层函数调用都会带来不小的开销,特别对于调用频率高,但单次消耗较小的calltree,多层的函数调用开销就很大,这个时候可以考虑将其展开。
对于之前调到的profile的代码,foo这个call tree非常简单,但频率高。修改代码,增加一个plain_foo()函数, 直接返回最终结果,关键输出如下:
跟之前的结果对比:
可以看到,优化了差不多3倍。
第二:优化属性查找
上面提到,python 的属性查找效率很低,如果在一段代码中频繁访问一个属性(比如for循环),那么可以考虑用局部变量代替对象的属性。
第三:关闭GC
在本文的第一章节已经提到,关闭GC可以提升python的性能,GC带来的顿卡在实时性要求比较高的应用场景也是难以接受的。但关闭GC并不是一件容易的事情。我们知道python的引用计数只能应付没有循环引用的情况,有了循环引用就需要靠GC来处理。在python语言中, 写出循环引用非常容易。比如:
# case 1
a, b = SomeClass(), SomeClass()
a.b, b.a = b, a
# case 2
lst = []
lst.append(lst)
# case 3
self.handler = self.some_func
当然,大家可能说,谁会这么傻,写出这样的代码,是的,上面的代码太明显,当中间多几个层级之后,就会出现“间接”的循环应用。在python的标准库 collections里面的OrderedDict就是case2:
要解决循环引用,第一个办法是使用弱引用(weakref),第二个是手动解循环引用。
第四:setcheckinterval
如果程序确定是单线程,那么修改checkinterval为一个更大的值,这里有介绍。
第五:使用__slots__
slots最主要的目的是用来节省内存,但是也能一定程度上提高性能。我们知道定义了__slots__的类,对某一个实例都会预留足够的空间,也就不会再自动创建__dict__。当然,使用__slots__也有许多注意事项,最重要的一点,继承链上的所有类都必须定义__slots__,python doc有详细的描述。下面看一个简单的测试例子:
class BaseSlots(object):
__slots__ = ['e', 'f', 'g']
class Slots(BaseSlots):
__slots__ = ['a', 'b', 'c', 'd']
def __init__(self):
self.a = self.b = self.c = self.d = self.e = self.f = self.g = 0
class BaseNoSlots(object):
pass
class NoSlots(BaseNoSlots):
def __init__(self):
super(NoSlots,self).__init__()
self.a = self.b = self.c = self.d = self.e = self.f = self.g = 0
def log_time(s):
begin = time.time()
for i in xrange(10000000):
s.a,s.b,s.c,s.d, s.e, s.f, s.g
return time.time() - begin
if __name__ == '__main__':
print 'Slots cost', log_time(Slots())
print 'NoSlots cost', log_time(NoSlots())
输出结果如下
Slots cost 3.12999987602
NoSlots cost 3.48100018501