深度学习
weixin_41744018
这个作者很懒,什么都没留下…
展开
-
眼底图像4
眼底图像分割原创 2022-06-01 16:23:24 · 681 阅读 · 0 评论 -
眼底图像识别分割3
原创 2022-05-31 15:44:53 · 218 阅读 · 0 评论 -
眼底图像2
本文利用公共眼底图像数据集 REFUGE进行 OD 和 OC 分割,评价方法性能. ERFUGE 数据集包括1 200 幅彩色眼底图像,其中120 幅为青光眼患者的,1 080 幅为非青光眼患者的. 所有眼底图像以每个颜色通道为8 位的 JPEG 格式存储. 数据集由官方划分为 3 个子集,每个子集包含 400 幅眼底图像,分别包含 10% 的青光眼病例和 90% 的非青光眼病例. 图像分辨率为2 124 × 2 056 和1 634 × 1 634. 每幅图像中 OD 和 OC 的标注由原创 2022-05-30 15:53:48 · 687 阅读 · 0 评论 -
眼底图像识别
医学数据中的眼底彩照背景多为橘黄色和橘红色,除了较容易观察到的生理结构信息:眼底血管、视杯视盘和黄斑等,还有不易观察的病理结构信息:如血管瘤、渗出物、点状出血等。u_net在医疗图像识别领域应用比较广,主要是语义分割数据集:血管异常、视盘视杯细微变化、身处物质、血管动脉瘤Le-Net,AlexNet,VggNet,GoogleNet,ResNet,Inception等卷积层(convolutionlayer),池化层(polling layer),激活函数(Activation layer),原创 2022-05-30 14:32:57 · 379 阅读 · 0 评论