【力扣】1377. T 秒后青蛙的位置 -给你一棵由 n 个顶点组成的无向树,顶点编号从 1 到 n。青蛙从 顶点 1 开始起跳。规则如下::

1377. T 秒后青蛙的位置

给你一棵由 n 个顶点组成的无向树,顶点编号从 1 到 n。青蛙从 顶点 1 开始起跳。规则如下:

在一秒内,青蛙从它所在的当前顶点跳到另一个 未访问 过的顶点(如果它们直接相连)。
青蛙无法跳回已经访问过的顶点。
如果青蛙可以跳到多个不同顶点,那么它跳到其中任意一个顶点上的机率都相同。
如果青蛙不能跳到任何未访问过的顶点上,那么它每次跳跃都会停留在原地。
无向树的边用数组 edges 描述,其中 edges[i] = [fromi, toi] 意味着存在一条直接连通 fromi 和 toi 两个顶点的边。

返回青蛙在 t 秒后位于目标顶点 target 上的概率。

示例 1:
在这里插入图片描述
输入:n = 7, edges = [[1,2],[1,3],[1,7],[2,4],[2,6],[3,5]], t = 2, target = 4
输出:0.16666666666666666
解释:上图显示了青蛙的跳跃路径。青蛙从顶点 1 起跳,第 1 秒 有 1/3 的概率跳到顶点 2 ,然后第 2 秒 有 1/2 的概率跳到顶点 4,因此青蛙在 2 秒后位于顶点 4 的概率是 1/3 * 1/2 = 1/6 = 0.16666666666666666 。

提示:

1 <= n <= 100
edges.length == n-1
edges[i].length == 2
1 <= edges[i][0], edges[i][1] <= n
1 <= t <= 50
1 <= target <= n
与准确值误差在 10^-5 之内的结果将被判定为正确。

代码

此处用DFS。
首先我们要把输入数组存储成无向图的形式,可以用map,数组。
然后来看青蛙怎么跳:
终止条件:
(1)t==0,如果当前节点等于目标顶点则返回当前概率p反之返回0;
(2)当到最底一层时,也就是叶子节点,若当前节点等于目标顶点则返回当前概率p反之返回0;
递归条件:
若不满足终止条件,那我们就计算当前节点的子节点(注意除了第一个节点之外,后面每个节点的子节点个数要减去1,因为后面map存的不仅是它的子节点还有它的父节点)当子节点数等于0时,其实就是到了叶子节点终止条件(2)
否则,就对当前节点的每个子节点进行递归处理。(注意在当前节点的vector里面是有父节点的所以要进行判断)
for (auto it : tree[pre]) {
if (it != father) {
res = max(res, dfs(it, pre, t - 1, target, p * 1.0 / ch));//这块取max是因为吧咱们这是多条路来走,得出最后的能到的概率,其实除了其中一条剩下的都是0.
}
}

上代码:

class Solution {
public:
    double dfs(map<int, vector<int>>&tree,int pre, int father, int t, int target, double p) {
        if (t == 0)//终止(1)
            return pre == target ? p : 0;

        int ch = tree[pre].size();//当前节点的孩子个数
        if (pre != 1)ch--;

        if (ch == 0)//终止(2)
            return pre == target ? p : 0;
        //不到叶节点,开始进行递归。递归条件
        double res = 0;
        for (auto it : tree[pre]) {
            if (it != father) {
                res = max(res, dfs(tree,it, pre, t - 1, target, p * 1.0 / ch));
            }
        }
        return res;
    }
    double frogPosition(int n, vector<vector<int>>& edges, int t, int target) {
        map<int, vector<int>>tree;//存数组。
        for (auto &it:edges) {//从互相push_back中可以看出除了第一个节点外,其他节点的vector 里面都包含有父节点。
            tree[it[0]].push_back(it[1]);
            tree[it[1]].push_back(it[0]);
        }
        //vector<int>tag(n + 1, 0);
        return dfs(tree,1, -1, t, target, 1);
    }
};

测试:

int main() {
    //[[1,2],[1,3],[1,7],[2,4],[2,6],[3,5]],
    vector<vector<int>>vec = { {1,2},{1,3},{1,7},{2,4},{2,6},{3,5} };
    Solution S;
    cout << S.frogPosition(7, vec, 2, 4) << endl;
    return 0;
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力做一个code杠精

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值