- 博客(5)
- 资源 (4)
- 收藏
- 关注
原创 传统特征点检测器的检测特征点和匹配流程
一、传统特征点检测器的检测(一) ORB对于ORB,是对fast检测角点方法的提升,传统fast角点检测本身是不具有方向性的,所以在ORB特征中添加对特征方向的计算得到ofast;ORB采用BRIEF方法计算特征描述子,但是缺点也很明显:不具备旋转不变性,对噪声敏感,不具备尺度不变性。所以ORB对brief也进行的一定的提升。fast角点是通过选取当前像素点然后对当前像素点进去半径为3的圆周上像素值对比进行检测的,大致流程如下:BRIEF算法计算出来的是一个二进制串的特征描述符。原本的方法对进行
2021-03-19 21:01:43 3722 2
原创 SURF的提取过程和代码逻辑过程
surf的特征检测和描述子的形成过程首先进行极值点检测,构造hessian矩阵,用盒子滤波器近似相应的高斯模板,然后将hessian矩阵的行列式简化,构造高斯金字塔图像大小不变,模板大小改变,尺度变化,根据层数和组数定义模板尺寸,同样进行26个点的对比,并设置行列式的阈值进行筛选。计算特征点的主方向,以特征点为中心,计算半径6个尺度值内的的邻域的x,y方向的harr小波响应,然后对计算结束的值进行方差为2个尺度值的高斯加权,以特征点为中心,进行60度扇形滑动,计算最长矢量方向作为主方向。最后构造特
2021-03-19 20:19:10 171
原创 SIFT的提取过程和代码逻辑过程
sift的特征检测和描述子的形成过程首先通过构造高斯的尺度空间,将图像和高斯函数进行卷积,通过设置不同的方差来模拟人眼不同尺度的变化。通过差分高斯进行代替拉普拉斯算子,并设置相邻尺度空间的比例系数,并关联两组之间的关系,上一层的第一层是由下一层的倒数第三层降采样得到。通过比较当前像素和周围8个像素,上下18个像素,一共26个像素的灰度值,判断是否为极值,以及通过插值和特征值来调整和改变特征点的位置和质量。最后通过图像的梯度直方图的形式来选取特征点的主方向和辅方向,通过邻域的方式进行360度10度一
2021-03-19 20:15:17 169
原创 ORB的提取过程和代码逻辑过程
ORB的提取过程和代码逻辑过程orb的特征点检测和描述子的形成过程orb有ofast角点和rbiref描述子ofast角点ofast角点是在fast角点的基础上加入了其方向的特征,通过灰度质心法确定特征点的方向性,实现特征点的旋转不变性。fast角点的识别是基于像素的半径为3的圆周围的16个像素点进行中间像素点,阈值和其他像素点的对比,进行判别和识别,并将图像加以不同尺度形成金字塔进行不同尺度的特征点的提取,实现了尺度不变性。rbriefbrief描述子是在特征点领域内按照一定的限制进行随机点
2021-03-19 20:07:02 229
原创 The system is running in low-graphics mode时解决方法
The system is running in low-graphics mode时解决方法输入命令修改权限:cd /etc/X11sudo cp xorg.conf.failsafe xorg.confsudo reboot可顺利进入Ubuntu如果出现 sudo[用户名] 菱形输入root用户密码...
2019-05-22 10:49:58 223
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人