排序:
默认
按更新时间
按访问量

(转)十大数据挖掘之CART

参考文章:https://blog.csdn.net/baimafujinji/article/details/53269040在2006年12月召开的 IEEE 数据挖掘国际会议上(ICDM, International Conference on Data Mining),与会的各位专家选出了...

2018-06-22 12:15:01

阅读数:4

评论数:0

(转)几种Adaboost的比较

参考文章:https://www.cnblogs.com/jcchen1987/p/4581651.html关于boost算法  boost算法是基于PAC学习理论(probably approximately correct)而建立的一套集成学习算法(ensemble learning)。其根本...

2018-06-22 12:12:40

阅读数:0

评论数:0

(转)用CART作为弱分类器的Adaboost算法

参考地址:https://www.cnblogs.com/qwj-sysu/p/5989282.html在之前的决策树到集成学习里我们说了决策树和集成学习的基本概念(用了adaboost昨晚集成学习的例子),其后我们分别学习了决策树分类原理和adaboost原理和实现,上两篇我们学习了cart(决...

2018-06-22 11:59:10

阅读数:4

评论数:0

NN中常用的距离计算公式:欧式距离、曼哈顿距离、马氏距离、余弦、汉明距离

欧式距离,曼哈顿距离等等

2018-06-21 13:55:05

阅读数:9

评论数:0

(转)欧氏距离与马氏距离

参考文章:Preface  之前在写《Multi-view CNNs for 3D Objects Recognition》的阅读笔记的时候,文章中的一个创新点便是将MVCNN网络提取到的3D Objects的形状特征描述符,投影到马氏距离(Mahalanobis Distance)上,“这样的话...

2018-06-21 13:44:45

阅读数:14

评论数:0

(转)Mahalanobis距离(马氏距离)的“哲学”解释

参考文章:https://blog.csdn.net/jmy5945hh/article/details/20536929基础知识:假设空间中两点x,y,定义:欧几里得距离,Mahalanobis距离,不难发现,如果去掉马氏距离中的协方差矩阵,就退化为欧氏距离。那么我们就需要探究这个多出来的因子究...

2018-06-21 13:41:48

阅读数:8

评论数:0

【机器学习课程-华盛顿大学】:4 聚类和检索 4.5 LDA测试

4、测试只有第3题错误:选择2

2018-06-20 15:39:31

阅读数:59

评论数:0

LDA求解:Gibbs采样算法

本文是LDA主题模型的第二篇,读这一篇之前建议先读文本主题模型之LDA(一) LDA基础,同时由于使用了基于MCMC的Gibbs采样算法,如果你对MCMC和Gibbs采样不熟悉,建议阅读之前写的MCMC系列MCMC(四)Gibbs采样。 1. Gibbs采样算法求解LDA的思路    首先,回顾L...

2018-06-20 11:44:49

阅读数:16

评论数:0

LDA基础

在前面我们讲到了基于矩阵分解的LSI和NMF主题模型,这里我们开始讨论被广泛使用的主题模型:隐含狄利克雷分布(Latent Dirichlet Allocation,以下简称LDA)。注意机器学习还有一个LDA,即线性判别分析,主要是用于降维和分类的,如果大家需要了解这个LDA的信息,参看之前写的...

2018-06-20 11:43:54

阅读数:10

评论数:0

【机器学习课程-华盛顿大学】:4 聚类和检索 4.4 MoG混合高斯模型编程测试(2)

1、初始化优化使用k-means得到均值u,用u来初始化EM算法的均值,权重和方差。2、初始化优化代码实现k-means初始化meanfrom sklearn.cluster import KMeans np.random.seed(5) num_clusters = 25 # Use sci...

2018-06-19 23:53:29

阅读数:10

评论数:0

numpy.random.uniform均匀分布

numpy.random.uniform均匀分布

2018-06-19 23:28:03

阅读数:14

评论数:0

python--随机函数(random,uniform,randint,randrange,shuffle,sample)

random()random()方法:返回随机生成的一个实数,它在[0,1)范围内运用random()方法的语法:import random #random()方法不能直接访问,需要导入random模块,然后通过random静态对象调用该方法random.randomrandom.random(...

2018-06-19 23:22:52

阅读数:10

评论数:0

numpy生成正态分布数组的问题

np.random.randnnp.random.normal>>> import numpy as np >>> np.random.normal(size=(3,...

2018-06-19 22:31:26

阅读数:11

评论数:0

numpy.argsort的用法介绍

参考文章:https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.argsort.htmlnumpy.argsort(a, axis=-1, kind='quicksort', order=None)返回数组排序后对应的下...

2018-06-19 22:26:20

阅读数:12

评论数:0

【机器学习课程-华盛顿大学】:4 聚类和检索 4.4 MoG混合高斯模型编程测试

1 k-means和MoG都容易出现局部最优解2、公式:3、自己实现EM算法(1)主函数:def EM(data, init_means, init_covariances, init_weights, maxiter=1000, thresh=1e-4): # Make cop...

2018-06-19 21:33:12

阅读数:76

评论数:0

scipy.stats.multivariate_normal高斯分布

参考地址:https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.multivariate_normal.htmlscipy.stats.multivariate_normalParameters:x : ar...

2018-06-19 10:21:48

阅读数:17

评论数:0

【机器学习课程-华盛顿大学】:4 聚类和检索 4.6 聚类总结、分层聚类(分裂/成团)

总结与展望

2018-06-18 00:00:16

阅读数:9

评论数:0

【机器学习课程-华盛顿大学】:4 聚类和检索 4.5 LDA隐Dirichlet模型

LDA

2018-06-17 23:47:43

阅读数:10

评论数:0

【机器学习课程-华盛顿大学】:4 聚类和检索 4.4 MoG混合高斯模型和EM估计最大化

MoG混合高斯模型和EM估计最大化

2018-06-17 21:05:32

阅读数:13

评论数:0

【机器学习课程-华盛顿大学】:4 聚类和检索 4.3 k-means代码实现

1、k-means中使用欧氏距离,其实跟cosine distance一致。证明:假设x和y已经归一化,也就是|x|和|y|都为1。2、自己写的k-means程序# Fill in the blanks def kmeans(data, k, initial_centroids, maxiter,...

2018-06-17 15:22:05

阅读数:20

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭