排序:
默认
按更新时间
按访问量

CNN系列介绍

这是一篇基础理论的博客,基本手法是抄、删、改、查,毕竟介绍这几个基础网络的博文也挺多的,就算是自己的一个笔记吧,以后忘了多看看。主要是想介绍下常用的几种卷积神经网络。卷积神经网络最初为解决图像识别问题而提出,目前广泛应用于图像,视频,音频和文本数据,可以当做深度学习的代名词。目前图像分类中的Res...

2018-08-17 16:52:24

阅读数:0

评论数:0

2018面经(2):高级算法工程师

时间:2018.8.17  时长:30min 公司:ZFB 问题: 1、基础概念:池化的作用,怎么调参数 2、卷积神经网络:resnet, inception/googlenet, xception以及最新的模型SSD等 3、svm原理 4、模型切割怎么做:降低深度宽度 5、怎么移植...

2018-08-17 14:47:46

阅读数:17

评论数:0

KNN优化算法4:LSH

参考文章:https://blog.csdn.net/cshilin/article/details/52119682                   https://blog.csdn.net/icvpr/article/details/12342159 LSH(Location Sen...

2018-08-17 11:47:58

阅读数:6

评论数:0

介绍一篇对卷积理解很到位的文章

https://blog.csdn.net/bitcarmanlee/article/details/54729807

2018-08-17 10:30:50

阅读数:8

评论数:0

k-means聚类的传统算法和优化

参考文章:https://www.cnblogs.com/yixuan-xu/p/6272208.html   一、概述       在本篇文章中将对四种聚类算法(K-means,K-means++,ISODATA和Kernel K-means)进行详细介绍,并利用数据集来真实地反映这四种算...

2018-08-13 21:28:37

阅读数:13

评论数:0

KNN的优化算法4:LSH

LSH:针对海量、高维数据的NN搜索提出来的。一般相似图像搜索、网页搜索用的比较多。   使用LSH进行对海量数据建立索引(Hash table)并通过索引来进行近似最近邻查找的过程如下: 1. 离线建立索引 (1)选取满足(d1,d2,p1,p2)-sensitive的LSH hash ...

2018-08-13 18:39:25

阅读数:14

评论数:0

KNN的优化算法3:Ball-tree

参考文档:https://www.cnblogs.com/lesleysbw/p/6074662.html                  https://www.zhihu.com/question/30957691   1. 原理:   为了改进KDtree的二叉树树形结构,并且沿着...

2018-08-13 17:59:58

阅读数:28

评论数:0

python中的sort排序原理

参考文档:https://www.zhihu.com/question/36280272                   https://blog.csdn.net/yangzhongblog/article/details/8184707 python中的sorted排序:Timsort...

2018-08-13 17:06:32

阅读数:8

评论数:0

kdtree划分空间维度选择使用“最大方差法”的好处

参考文章:https://blog.csdn.net/carryheart/article/details/78142283 最近学习《统计学习方法》里的kd树时,虽然算法的原理比较清晰,但是一直感觉选择维度的时候使用j = (i mod k) + 1的轮替模式会导致空间分的太不均衡,可能导致搜...

2018-08-13 10:40:31

阅读数:17

评论数:0

KNN算法优化

KNN缺点(1):样本不平衡问题 比如下列Y点,本应该属于红色,但是如果采用KNN准则,属性就被误判成蓝色了。 缺点(1)解决方法:距离加权加权 将我的博文:https://blog.csdn.net/weixin_41770169/article/details/81560946 将...

2018-08-13 09:53:19

阅读数:9

评论数:0

KNN的优化算法2:KD-tree(2)

推荐参考文章:https://leileiluoluo.com/posts/kdtree-algorithm-and-implementation.html   k-d tree即k-dimensional tree,常用来作空间划分及近邻搜索,是二叉空间划分树的一个特例。通常,对于维度为k,...

2018-08-10 16:49:23

阅读数:27

评论数:0

KNN的优化算法2:KD-tree

传统KNN缺点:数据量特别大时,需要计算参考点和每个样本点的距离,计算量非常大,所以提出一种优化算法-----kd-tree.   为了提高kNN搜索的效率,可以考虑使用特殊的结构存储训练数据,以减小计算距离的次数。 kd树(K-dimension tree)是一种对k维空间中的实例点进行存...

2018-08-10 16:48:22

阅读数:13

评论数:0

非线性激活函数的公式、导数和优缺点

如下主要介绍4种:Sigmoid, Tanh, Relu, Leaky Relu 各种非线性激活函数的优缺点: Sigmoid: 现在吴恩达几乎从来不用sigmoid激活函数了,但是吴恩达会用sigmoid的一个例外场合是进行二元分类时。 缺点:     1、Sig...

2018-08-10 12:12:29

阅读数:25

评论数:0

KNN的优化算法1:距离加权

参考文章:https://www.cnblogs.com/bigmonkey/p/7387943.html 对参考文章中最后一部分说的有问题的地方进行了修改。   权值加权:为每个点的距离增加一个权重,使得距离近的点可以得到更大的权重,在此描述如何加权。 反函数   该方法最简单的形...

2018-08-10 12:06:21

阅读数:21

评论数:0

2018面经(1):机器视觉工程师岗位

时间:20180806 岗位:机器视觉工程师 公司:H 面试流程:一开始是40分钟的笔试。之后是2轮技术面,1个小时。   一、笔试4页纸,40分钟 1.C语言基础选择题 运算符优先级,指针操作,内存分配 2.算法问答题 (1)非线性激活函数 从反面说,如果神经网络的激活函数...

2018-08-09 09:09:41

阅读数:47

评论数:0

python小函数accuracy分享

def get_classification_accuracy(feature_matrix, sentiment, coefficients): scores = np.dot(feature_matrix, coefficients) apply_threshold = np...

2018-07-18 16:16:11

阅读数:46

评论数:0

python map函数

参考地址:http://www.runoob.com/python/python-func-map.html 描述 map() 会根据提供的函数对指定序列做映射。 第一个参数 function 以参数序列中的每一个元素调用 function 函数,返回包含每次 function 函数返回值的...

2018-07-18 09:01:34

阅读数:27

评论数:0

graphlab create中topk用法

参考文档:https://turi.com/products/create/docs/generated/graphlab.SFrame.topk.html 要求:需要在test_data中寻找最相似的前20种positive 只有sframe才可以用topk,因此需要继续用到原来的结构t...

2018-07-17 17:43:31

阅读数:28

评论数:0

统计list中满足条件的数的个数

要求:统计list weights['value']中满足条件的数的个数: >=0、<0的个数分别是多少 解决方法: np.sum(list(map(lambda x: x >= 0, weights['value'])...

2018-07-17 17:17:18

阅读数:143

评论数:1

【狗狗分类项目】(4)小功能编写

1 随机展示一张照片2 人脸加狗耳朵3 杂交狗检测

2018-07-13 16:37:31

阅读数:44

评论数:1

提示
确定要删除当前文章?
取消 删除
关闭
关闭