sparkstructedStreaming将DF写入hudi报format(“hudi“)错

6 篇文章 0 订阅

hudi 0.9.0
spark 3.0.2
不知道为什么hudi不能被识别,只有填org.apache.hudi可以

result.write.format(“hudi”) 改成 result.write.format(“org.apache.hudi”)

随着互联网的发展,数据的不断膨胀,从刚开始的关系型数据库到非关系型数据库,再到大数据技术,技术的不断演进最终是随着数据膨胀而不断改变,最初的数据仓库能解决我们的问题,但是随着时代发展,企业已经不满足于数据仓库,希望有更强大的技术来支撑数据的存储,包括结构化,非结构化的数据等,希望能够积累企业的数据,从中挖掘出更大的价值。基于这个背景,数据湖的技术应运而生。本课程基于真实的企业数据湖案例进行讲解,结合业务实现数据湖平台,让大家在实践中理解和掌握数据湖技术,未来数据湖的需求也会不断加大,希望同学们抓住这个机遇。项目中将以热门的互联网电商业务场景为案例讲解,具体分析指标包含:流量分析,订单分析,用户行为分析,营销分析,广告分析等,能承载海量数据的实时分析,数据分析涵盖全端(PC、移动、小程序)应用。Apache Hudi代表Hadoop Upserts anD Incrementals,管理大型分析数据集在HDFS上的存储。Hudi的主要目的是高效减少摄取过程中的数据延迟。Hudi的出现解决了现有hadoop体系的几个问题:1、HDFS的可伸缩性限制 2、需要在Hadoop中更快地呈现数据 3、没有直接支持对现有数据的更新和删除 4、快速的ETL和建模 5、要检索所有更新的记录,无论这些更新是添加到最近日期分区的新记录还是对旧数据的更新,Hudi都允许用户使用最后一个检查点时间戳,此过程不用执行扫描整个源表的查询。 本课程包含的技术: 开发工具为:IDEA、WebStorm Flink1.9.0、HudiClickHouseHadoop2.7.5 Hbase2.2.6Kafka2.1.0 Hive2.2.0HDFS、MapReduceSpark、ZookeeperBinlog、Canal、MySQLSpringBoot2.0.2.RELEASE SpringCloud Finchley.RELEASEVue.js、Nodejs、HighchartsLinux Shell编程课程亮点: 1.与企业接轨、真实工业界产品 2.ClickHouse高性能列式存储数据库 3.大数据热门技术Flink4.Flink join 实战 5.Hudi数据湖技术6.集成指标明细查询 7.主流微服务后端系统 8.数据库实时同步解决方案 9.涵盖主流前端技术VUE+jQuery+Ajax+NodeJS 10.集成SpringCloud实现统一整合方案 11.互联网大数据企业热门技术栈 12.支持海量数据的实时分析 13.支持全端实时数据分析 14.全程代码实操,提供全部代码和资料 15.提供答疑和提供企业技术方案咨询企业一线架构师讲授,代码在老师的指导下企业可以复用,提供企业解决方案。  版权归作者所有,盗版将进行法律维权。  
使用hudi-spark-client写数据到hudi表的步骤如下: 1. 首先,创建一个SparkSession对象,并配置相关的SparkHudi属性。例如: ```scala val spark = SparkSession.builder() .appName("HudiSparkClientExample") .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer") .config("spark.sql.hive.convertMetastoreParquet", "false") .config("spark.sql.sources.partitionColumnTypeInference.enabled", "false") .config("spark.sql.hive.verifyPartitionPath", "false") .config("spark.hadoop.hive.exec.dynamic.partition.mode", "nonstrict") .config("spark.hadoop.hive.exec.dynamic.partition", "true") .config("spark.sql.warehouse.dir", "hdfs://localhost:9000/user/hive/warehouse") .config("spark.sql.catalogImplementation", "hive") .enableHiveSupport() .getOrCreate() ``` 2. 创建一个DataFrame对象,用于存储要写入Hudi表的数据。 ```scala val data = Seq( (1, "John Doe", 25), (2, "Jane Smith", 30) ) val df = spark.createDataFrame(data).toDF("id", "name", "age") ``` 3. 使用`HoodieSparkSqlWriter`将DataFrame写入Hudi表。指定要写入的表名、要使用的主键列以及要使用的分区列。 ```scala df.write .format("org.apache.hudi") .option("hoodie.table.name", "my_hudi_table") .option("hoodie.datasource.write.precombine.field", "id") .option("hoodie.datasource.write.recordkey.field", "id") .option("hoodie.datasource.write.partitionpath.field", "age") .mode(SaveMode.Append) .save("hdfs://localhost:9000/path/to/hudi_table") ``` 4. 最后,关闭SparkSession对象。 ```scala spark.stop() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值