- 博客(3)
- 收藏
- 关注
原创 (飞桨)强化学习7日打卡营——基于表格型方法求解RL
两个作业的对比: Lesson2 表格型方法—— Q-learning (小心探索) # 根据输入观察值,采样输出的动作值,带探索 def sample(self, obs): if np.random.uniform(0, 1) < (1.0 - self.epsilon): #根据table的Q值选动作 action = self.predict(obs) else: action = np.ran
2020-06-18 00:30:21 219
原创 (飞桨)强化学习7日打卡营——强化学习(RL)初印象
Part1 什么是强化学习 强化学习(英语:Reinforcement learning,简称RL)是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益。 核心思想:智能体agent在环境environment中学习,根据环境的状态state(或观测到的observation),执行动作action,并根据环境的反馈 reward(奖励)来指导更好的动作。 Part2 强化学习能做什么 游戏(马里奥、Atari、Alpha Go、星际争霸等) 机器人控制(机械臂、机器人、自动驾驶、四
2020-06-18 00:23:25 354
原创 飞桨——Python小白逆袭大神心得总结
在一次微信公众号的阅读中偶然了解到这个课程,随后加入了。这期间学校也上着网课,自己额外时间短期学习这个,虽然还没有百分百掌握所有的知识,也学习了解了不少! Day1-人工智能概述与入门基础 主要学习了Python的基础语法: #1.基础操作 #2.条件判断if #3.循环操作—for #3.循环操作—while #4.break、continue、pass #5.数据类型—Number(数字)...
2020-04-29 10:52:51 587
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人