在Java中计算字符串相似度有多种算法,每种算法适用于不同的场景和需求
比如:
汉明距离(Hamming Distance): 主要用于等长字符串的比较,计算两个等长字符串在对应位置上不同字符的个数
莱文斯坦距离(Levenshtein Distance):衡量两个序列差异的度量,通过插入、删除和替换操作的最小次数来计算
Jaro-Winkler距离 :是莱文斯坦距离的一个变种,考虑了字符的匹配顺序,并且对前缀有额外的加分
这里主要说一下 Jaro-Winkler 简单使用
依赖
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-text</artifactId>
<version>1.9</version> <!-- 请检查最新版本 -->
</dependency>
类定义

public class JaroWinkleUtils {
boolean print_log = false;
JaroWinklerDistance jaroWinklerSimilarity = new JaroWinklerDistance();
public double compareString(String st1,String st2){
double similarity = jaroWinklerSimilarity.apply(st1, st2);
if(print_log){
System.out.println("Best Similarity: " + similarity + " st1 "+st1+" str2 "+st2);
}
return similarity;
}
}
503

被折叠的 条评论
为什么被折叠?



