数值计算——列主元高斯消去法求解线性方程组(附代码)

目录

列主元高斯消去法原理

列主元高斯消去法流程图

C++程序源代码

实例

运行结果


列主元高斯消去法原理

          在基本高斯消去法的消元过程中并没有考虑任何数值方面的问题,事实上这方面的问题是常见的,也是不能忽略的,即当主元a_{kk}^{(k)}\neq 0,且a_{kk}^{(k)}很小时,高斯消去法虽然能执行下去,但用a_{kk}^{(k)}作为主元计算行乘数时,会扩大误差,导致结果不可靠,甚至严重失真

 基本高斯消去法的求解过程如下(具体原理参考https://blog.csdn.net/weixin_41788456/article/details/102485139):

设Ax=b,A \in R^{n\times n},若A的所有顺序主子式均不为零,则基本高斯消元无需换行进行到底,得到唯一解,其消元和回代的计算公式为:

(1)消元计算     对于 k=1,2,\cdots ,n-1,

                                                               m_{ik}=\frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} ,i=k+1,\cdots ,n,\quad\quad \quad\quad \quad\quad \quad\quad \quad\quad \quad\quad \quad\quad \quad\quad \quad\quad\quad \left (1 \right ) 

                                    a_{ij}^{(k+1)}=a_{ij}^{(k)}-m_{ik}{a_{kj}^{(k)} ,b_{i}^{(k+1)}=b_{i}^{(k)}-m_{ik}{b_{k}^{(k)} ,i=k+1,\cdots ,n.\quad\quad \quad\quad \quad\quad\quad \quad \quad\quad\quad \left (2 \right )

(2)回代计算

                                         x_{n}=\frac{b_{n}^{(n)}}{a_{nn}^{(n)}} ,x_{i}=\frac{b_{i}^{(i)}-\sum_{j=i+1}^{n}a_{ij}^{(i)}x_{j}}{a_{ii}^{(i)}},i=n-1,\cdots ,1.\quad\quad \quad\quad \quad\quad \quad\quad \quad\quad \quad\quad \quad\quad \left (3 \right )

在上面的求解过程中可以看出,适当的改变算法可以有效的提高精度,其基本思想是,在高斯消去法的每一步先选择一个绝对值最大的元素,在进行行行交换、消元,即变换到第k步时,从第k列的a_{kk}^{(k)}及以下的各元素中选出绝对值最大者,然后通过行变换将它交换到主元素a_{kk}^{(k)}的位置上,再用其消去主对线以下的其他元素,最后变为同解的上三角形方程组,这种方法称为列主元高斯消去法。

列主元高斯消去法流程图

C++程序源代码

 

//列主元高斯消去法实现
//开发人员:chenshuai  开发日期:2019.11.24   邮箱:chenshuai0614@hrbeu.edu.cn 
#include "pch.h"
#include <iostream>//基本数据流输入/输出
#include <iomanip> //参数化输入/输出 
#include <vector>//STL动态数组容器
using namespace std;
//************************
//列主元高斯消去法公式
//***********************
vector<double> cpe_gaussian_elimination(vector<vector<double>>a, vector<double>b); //高斯消去法求解线性方程组AX=B
vector<double> cpe_gaussian_elimination(vector<vector<double>>a, vector<double>b)
{
	int n = size(b);
	vector<double>x;    //定义方程组解
	x.resize(n);
	vector<double>mi_k; //定义消去过程中的中间变量
	mi_k.resize(n);
	double sum,max=0,c;
	//n-1步消元
	for (int k = 0; k < n - 1; k++)
	{
		//列主元,找到绝对值最大的主元
		if (a[k][k] == 0 || fabs(a[k][k]) < epslion)//列主元的条件就是主元为0或者主元小于某一个值
		{
		    max = fabs(a[k][k]);
			for (int i = k; i < n; i++)
			{
				if (max < fabs(a[i][k]))
				{
					max = fabs(a[i][k]);
				}
			}
			//交换该行
			for (int i = k; i < n; i++)
			{
				if (max == fabs(a[i][k]))
				{
					for (int j = k; j < n; j++)
					{
						c = a[k][j];
						a[k][j] = a[i][j];
						a[i][j] = c;
					}
					c = b[k];
					b[k] = b[i];
					b[i] = c;
				}
			}
		//求出第i次初等行变换系数
			for (int j = k + 1; j < n; j++)
			{
				mi_k[j] = a[j][k] / a[k][k];
			}
			for (int i = k + 1; i < n; i++)
			{
				for (int j = 0; j < n; j++)
				{
					a[i][j] = a[i][j] - mi_k[i] * a[k][j];
				}
				b[i] = b[i] - mi_k[i] * b[k];
			}
	}	//回代过程
	x[n - 1] = b[n - 1] / a[n - 1][n - 1];
	for (int i = n - 2; i >= 0; i--)
	{
		sum = 0;
		for (int j = i + 1; j < n; j++)
		{
			sum = sum + a[i][j] * x[j];
		}
		x[i] = (b[i] - sum) / a[i][i];
	}
	return x;
}
int main()
{
	int n = 2;
	vector<vector<double>>a;
	a.resize(n, vector<double>(n));
	vector<double>b(n);
	vector<double>x;
	a[0] = { 0.007,-0.8 }, a[1] = {-0.1 ,10};
	b = { 0.7,10};
	x = cpe_gaussian_elimination(a, b);
	cout << "解为:" << endl;
	for (int i = 0; i < n; i++)
		cout <<"x["<<i<<"]="<< fixed << setprecision(2) << setw(5) << x[i] << endl;
}

实例

用列主元高斯消去法求解线性方程组:

                                                               \left\{\begin{matrix} 0.007x_{1}-0.8x_{2}=0.7\\ -0.1x_{1}+10x_{2}=10 \end{matrix}\right.\quad\quad \quad\quad \quad\quad \quad\quad \quad\quad\quad \quad\quad \quad\quad \quad\quad\quad \quad \quad\quad \left (4 \right )

运行结果

  • 13
    点赞
  • 74
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值