玩转OCR | 腾讯云智能结构化OCR全面指南

在数字化转型的浪潮中,光学字符识别(OCR)技术已成为企业提高效率、降低成本的关键工具。腾讯云智能结构化OCR凭借其先进的技术和广泛的应用场景,正在推动跨行业高效精准的文档处理与数据提取新时代。本文将全面介绍腾讯云智能结构化OCR的功能、技术优势、应用实践以及行业案例,帮助您深入了解并有效运用这一强大的工具。

在这里插入图片描述


一、产品介绍与技术优势

随着信息化时代的到来,企业每天都会生成和处理大量的文档、票据和表单。这些数据往往以纸质或图像形式存在,传统的人工录入不仅效率低下,还容易出错。OCR技术的出现为解决这一问题提供了有效途径。而在众多OCR解决方案中,腾讯云智能结构化OCR以其高精度、灵活性和易用性,成为众多企业的首选。

腾讯云智能结构化OCR产品分为 基础版高级版,两者均适用于各行业,能够精准识别卡证、物流单据、工业标签、服务合同及医疗报告等多种文档类型。无论面对版式灵活多变或中英文混合排版的挑战,该产品仍能保持卓越的识别精度。

腾讯云智能结构化OCR以 多模态大模型技术 为核心,融合了深度学习、图像检测技术及OCR大模型能力。通过智能建立键值对应关系,支持客户根据自身需求定制个性化模板,显著提高数据抓取与录入的效率。

在这里插入图片描述

腾讯云智能结构化OCR产品优势如下:

特性描述
高精度识别腾讯云智能结构化OCR支持任意版式的卡证票据识别,各字段的识别精度均处于业界领先水平。文本基础识别准确率达到98%以上,文本结构化准确率达到85%以上,确保企业能够获取高质量的数据。
完备性该产品支持多种常见版式的数据结构化提取,如警察证、教师资格证、道路运输证等,适用于多个行业场景。无论是固定卡证还是复杂的物流单据,均可实现智能识别,满足不同业务需求。
易用性用户仅需简单的几步配置,即可定制个性化需求模板,快速提取结构化数据,实现高效录入。腾讯云提供了丰富的API接口和详细的使用文档,开发者可以轻松集成OCR功能到自己的系统中。

二、API调用与场景实践

1. 图像增强

图像增强是指通过上传一张图片生成一张基于原图更加清晰的图片,用于提升图像质量。目前腾讯云API支持ImageBase64(图像的Base64编码字符串)或ImageUrl(图像URL)两种输入方式。

下面我们通过API Explorer中在线这个功能,我们先准备一张在线的模糊图片。
在这里插入图片描述

调试API后,系统返回处理成功的响应,并提供增强后的图像的base64编码。

在这里插入图片描述
通过将base64编码转换成文件流,我们可以得到增强后的图片。
在这里插入图片描述
通过对比原图和增强后的图像,可以明显看出图像质量的提升,效果非常好。

上面的只是在线调用的示例,实际开发中我们更多会用程序调用API的方法,下面是图像增强API的调用示例:

Java代码示例:

package com.tencent;
import com.tencentcloudapi.common.AbstractModel;
import com.tencentcloudapi.common.Credential;
import com.tencentcloudapi.common.profile.ClientProfile;
import com.tencentcloudapi.common.profile.HttpProfile;
import com.tencentcloudapi.common.exception.TencentCloudSDKException;
import com.tencentcloudapi.ocr.v20181119.OcrClient;
import com.tencentcloudapi.ocr.v20181119.models.*;

public class Sample {
    public static void main(String [] args) {
        try{
            Credential cred = new Credential("SecretId", "SecretKey");
            HttpProfile httpProfile = new HttpProfile();
            httpProfile.setEndpoint("ocr.tencentcloudapi.com");
            ClientProfile clientProfile = new ClientProfile();
            clientProfile.setHttpProfile(httpProfile);
            OcrClient client = new OcrClient(cred, "", clientProfile);
            ImageEnhancementRequest req = new ImageEnhancementRequest();
            ImageEnhancementResponse resp = client.ImageEnhancement(req);
            System.out.println(AbstractModel.toJsonString(resp));
        } catch (TencentCloudSDKException e) {
            System.out.println(e.toString());
        }
    }
}

2. 票据识别

票据识别是指通过OCR技术对各类票据(如发票、收据、报销单等)进行文字识别和数据提取。腾讯云智能结构化OCR提供了高精度的票据识别能力,能够自动提取票据中的关键信息,如发票号码、金额、日期等,极大地提升了企业的自动化报销和财务管理效率。

下面我们通过API Explorer中在线这个功能,我们先准备一张票据图片。

在这里插入图片描述

接着,我们在Image64的参数位上传。
在这里插入图片描述

点击发起调用,系统返回处理成功的响应,并提供识别后的结构化数据。

在这里插入图片描述

上面的只是在线调用的示例,实际开发中我们更多会用程序调用API的方法,下面是票据识别API的调用示例:

.NET代码示例:

using System;
using System.Threading.Tasks;
using Newtonsoft.Json;
using TencentCloud.Common;
using TencentCloud.Common.Profile;
using TencentCloud.Ocr.V20181119;
using TencentCloud.Ocr.V20181119.Models;

namespace TencentCloudExamples
{
    class VatInvoiceOCR
    {
        static void Main(string[] args)
        {
            try
            {
                Credential cred = new Credential {
                    SecretId = "********",
                    SecretKey = "********"
                };
                ClientProfile clientProfile = new ClientProfile();
                HttpProfile httpProfile = new HttpProfile();
                httpProfile.Endpoint = ("ocr.tencentcloudapi.com");
                clientProfile.HttpProfile = httpProfile;
                OcrClient client = new OcrClient(cred, "", clientProfile);
                VatInvoiceOCRRequest req = new VatInvoiceOCRRequest();
                VatInvoiceOCRResponse resp = client.VatInvoiceOCRSync(req);
                Console.WriteLine(AbstractModel.ToJsonString(resp));
            }
            catch (Exception e)
            {
                Console.WriteLine(e.ToString());
            }
        }
    }
}

3. 特定场景识别

腾讯云智能结构化OCR不仅支持通用的文字识别,还针对特定场景提供了专业的识别功能,如数学公式识别和印章识别。这些功能能够满足不同业务需求,提升数据处理的精度和效率。

3.1 数学公式识别

数学公式识别是指通过OCR技术对数学公式进行准确的识别和解析,支持复杂的公式结构和符号。这对于教育、科研等领域具有重要意义。

我们找一张带有复杂公式的图片进行测试,如图。

在这里插入图片描述

本地创建python文件app.py,将图片转为base64的字符串格式填入,最终代码如下:

# -*- coding: utf-8 -*-
import hashlib
import hmac
import json
import sys
import time
from datetime import datetime
if sys.version_info[0] <= 2:
    from httplib import HTTPSConnection
else:
    from http.client import HTTPSConnection

def sign(key, msg):
    return hmac.new(key, msg.encode("utf-8"), hashlib.sha256).digest()

secret_id = "AKIDS***************bzE"
secret_key = "AD8rM*****************8S4f"
token = ""
service = "ocr"
host = "ocr.ap-shanghai.tencentcloudapi.com"
region = "ap-guangzhou"
version = "2018-11-19"
action = "FormulaOCR"
payload = "{\"ImageBase64\":\"data:image/png;base64,**********需要的图片base64编码*********\"}"
params = json.loads(payload)
endpoint = "https://ocr.ap-shanghai.tencentcloudapi.com"
algorithm = "TC3-HMAC-SHA256"
timestamp = int(time.time())
date = datetime.utcfromtimestamp(timestamp).strftime("%Y-%m-%d")

# ************* 步骤 1:拼接规范请求串 *************
http_request_method = "POST"
canonical_uri = "/"
canonical_querystring = ""
ct = "application/json; charset=utf-8"
canonical_headers = "content-type:%s\nhost:%s\nx-tc-action:%s\n" % (ct, host, action.lower())
signed_headers = "content-type;host;x-tc-action"
hashed_request_payload = hashlib.sha256(payload.encode("utf-8")).hexdigest()
canonical_request = (http_request_method + "\n" +
                     canonical_uri + "\n" +
                     canonical_querystring + "\n" +
                     canonical_headers + "\n" +
                     signed_headers + "\n" +
                     hashed_request_payload)

# ************* 步骤 2:拼接待签名字符串 *************
credential_scope = date + "/" + service + "/" + "tc3_request"
hashed_canonical_request = hashlib.sha256(canonical_request.encode("utf-8")).hexdigest()
string_to_sign = (algorithm + "\n" +
                  str(timestamp) + "\n" +
                  credential_scope + "\n" +
                  hashed_canonical_request)

# ************* 步骤 3:计算签名 *************
secret_date = sign(("TC3" + secret_key).encode("utf-8"), date)
secret_service = sign(secret_date, service)
secret_signing = sign(secret_service, "tc3_request")
signature = hmac.new(secret_signing, string_to_sign.encode("utf-8"), hashlib.sha256).hexdigest()

# ************* 步骤 4:拼接 Authorization *************
authorization = (algorithm + " " +
                 "Credential=" + secret_id + "/" + credential_scope + ", " +
                 "SignedHeaders=" + signed_headers + ", " +
                 "Signature=" + signature)

# ************* 步骤 5:构造并发起请求 *************
headers = {
    "Authorization": authorization,
    "Content-Type": "application/json; charset=utf-8",
    "Host": host,
    "X-TC-Action": action,
    "X-TC-Timestamp": timestamp,
    "X-TC-Version": version
}
if region:
    headers["X-TC-Region"] = region
if token:
    headers["X-TC-Token"] = token

try:
    req = HTTPSConnection(host)
    req.request("POST", "/", headers=headers, body=payload.encode("utf-8"))
    resp = req.getresponse()
    print(resp.read())
except Exception as err:
    print(err)

使用 python app.py 直接运行,得到图中的高数公式:

在这里插入图片描述

识别出的结果准确无误:

C − n k = ( − 1 ) k C n + k − 1 k C_{-n}^{k}=(-1)^{k} C_{n+k-1}^{k} Cnk=(1)kCn+k1k


3.2 印章识别

印章识别是指通过OCR技术对印章进行准确的识别和解析,支持各种印章类型和样式。这在合同管理、文件审核等场景中具有重要应用。

以下面的公章为例:

在这里插入图片描述

调试API后,系统返回处理成功的响应,并提供识别后的印章内容,识别结果示例如下:

在这里插入图片描述

Go代码示例:

package main

import (
    "fmt"

    "github.com/tencentcloud/tencentcloud-sdk-go/tencentcloud/common"
    "github.com/tencentcloud/tencentcloud-sdk-go/tencentcloud/common/errors"
    "github.com/tencentcloud/tencentcloud-sdk-go/tencentcloud/common/profile"
    ocr "github.com/tencentcloud/tencentcloud-sdk-go/tencentcloud/ocr/v20181119"
)

func main() {
    credential := common.NewCredential(
        "SecretId",
        "SecretKey",
    )
    cpf := profile.NewClientProfile()
    cpf.HttpProfile.Endpoint = "ocr.ap-shanghai.tencentcloudapi.com"
    client, _ := ocr.NewClient(credential, "ap-guangzhou", cpf)

    request := ocr.NewSealOCRRequest()
    request.ImageUrl = common.StringPtr("https://example.com/seal.jpg")
    response, err := client.SealOCR(request)
    if _, ok := err.(*errors.TencentCloudSDKError); ok {
        fmt.Printf("An API error has returned: %s", err)
        return
    }
    if err != nil {
        panic(err)
    }
    fmt.Printf("%s", response.ToJsonString())
}

三、实际应用与未来展望

在实际应用中,腾讯云智能结构化OCR不仅提升了文字识别的准确率,还为图像处理领域带来了更多可能性。通过智能化的结构化信息抽取,企业能够更加高效地处理和分析图像数据,进一步推动业务流程的自动化和智能化。尤其是在面对复杂文档和多语言排版时,腾讯云OCR表现出的卓越性能,使其在各行业中得到了广泛的应用和认可。

对于未来,随着技术的不断迭代和优化,OCR技术将会更加智能和高效,能够应对更复杂的应用场景,满足企业日益增长的数据处理需求。腾讯云智能结构化OCR将继续引领行业发展,为更多企业提供强有力的技术支持,推动全球数字化转型的进程。


参考资料

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Damon小智

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值