【网络流】基础二分图的最大匹配问题

        标题已经说了,所以有基础的牛们就别想在这篇博客里看到什么有价值的东西。这里的解法是最基础的。

        二分图是一种可以把图中的点分为两个不同的集合,且同一集合中不存在任意两个有边联通的点(就算是单向边也不行)的图。判断是否存在二分图有一个小技巧,如果有奇数条边的环,那么一定不存在二分图(相信可以自己想通)。至于最大匹配,就是选出尽量多的边,任意一个点只能与最多一条选中的的边相连。可以参照下面的图(a)。可能有人听说过“完美匹配”,就是说所有点都有在另一个集合中对应的点

        二分图的最大匹配问题,与另一个同为网络流问题的最大流问题,都有一个“最大”,那么这之间是否有什么关系呢?答案是,真的有!那么现在先来了解一下有关最大流问题的的一些知识:https://blog.csdn.net/weixin_41811117/article/details/79677054链接里的最大流用的也是基本解法。至于网络流是什么?也在链接里。

        之前说过二分图最大匹配与最大流有点关系,其实思索一下就会发现,人为主动的在图中添加一个s点与一个t点,然后将左边的点都与s点建立一条权值为1的边,右边的点都与t点建立一条权值为1的边,且所有边都改成从左集合到右集合的有向边,原本图(a)的二分图这就成了图(b),一道经典的最大流问题。

        

 

 

优化


​ 但是由于多增了n条边,复杂度也上去了不少,所以我们就要进行一些优化。

​ 我们可以对增广路稍稍做点修改,但是本质还是一样的。从左开始遍历时按照【遍历了(左→右)-没遍历(右←左)-遍历了(左→右)-……】这个模式走奇数步(这样终点才会在右边的集合)。为什么可以这样优化哪?相信这个问题读者能自己想通,并不是很难。

模板代码(DFS版)


 
#include<iostream>
#include<cstring>
#include<cstdio> 
#include<algorithm>
#define max 505  
using namespace std;  
int map[max][max],p[max],m,n,k,ans; //存储图 ,邻接矩阵,p数组记录集合2中的点所匹配的点的编号   
bool vis[max]; //记录集合2中的每个点是否被搜索过  
int read(){
    int ret=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-f;ch=getchar();}
    while(ch>='0'&&ch<='9') ret=ret*10+ch-'0',ch=getchar();
    return  ret*f;
}
bool DFS(int x)  {  
    for(int i=1;i<=m;i++)  {  
        if(map[x][i]&&!vis[i]/*保证一个节点只经过一次*/)  {  
            vis[i]=1;  
            if(p[i]==0||DFS(p[i])){  
                p[i]=x;  
                return 1;  
            }  
        }  
    }  
    return 0;  
}    
void getanswer()  {  
    for(int i=1;i<=n;i++) {  
        memset(vis,0,sizeof(vis));//清空上次搜索留下的痕迹 ,以找长度大于1的增广路  
        if(DFS(i)) ans++;  //找到增广路,答案就加一 
    }
    return;
}  
int main() {  
    freopen("ls.in","r",stdin);  
    memset(map,0,sizeof(map));  
    memset(p,0,sizeof(p));  
    n=read();m=read();k=read();//A、B集合元素的个数 
    for(int i=1;i<=k;i++){
        int x=read(),y=read();
        map[x][y]=1;//有向路 
    }
    getanswer();  
    if(!ans) printf("No Solution!\n");
    else printf("%d\n",ans);
    return 0;  
}  

 

 

        附上一道二分图匹配的模板题:Poj3041 http://poj.org/problem?id=3041

 

        题目大意(大部分翻译来自google,所以看不懂中文是正常的):

 

小行星

时间限制: 1000MS 内存限制: 65536K
提交总数: 25001 通过: 13523

描述

贝茜希望通过一个N×N网格(1 <= N <= 500)形状的危险小行星带来驾驶她的飞船。网格包含K个小行星(1 <= K <= 10,000),它们位于网格的格点处。 

幸运的是,贝茜拥有一个强大的武器,可以消除任意一行或一列中的所有小行星。这种武器非常昂贵,所以她希望少用一些。给定所有小行星的位置,输出贝茜需要射击以消除所有小行星的最少射击次数。

输入

*第1行:两个整数N和K,由一个空格隔开。 
*第2行... K + 1行:每行包含两个空格分隔的整数R和C(1 <= R,C <= N),分别表示小行星的行坐标和列坐标。

产量

*第1行:表示贝茜必须射击的最少次数的整数。

示例输入

3 4
1 1
1 3
2 2
3 2

1 1
1 3
2 2
3 2

示例输出

2

暗示

输入详细信息: 
下图表示数据,其中“X”是小行星和“.”是空的格子: 
X.X 
.X. 
.X. 

输出细节: 
贝西可能在第1排开火,破坏(1,1)和(1,3)处的小行星,然后她可能击落第2列以破坏(2,2)和(3,2)处的小行星。 

 

【题解】

        我说过是模板题了。。。

 

感谢《算法竞赛_入门经典》的图

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值