机器学习
抽象派大师
这个作者很懒,什么都没留下…
展开
-
diff函数求函数的导函数、偏导函数,及在某一点的导数、偏导数 --python
import scipy from math import sin,cos,expfrom sympy import *x=Symbol('x')y=Symbol('y')#求导函数及导数z1=x**3diff(z1,x) #关于x的导函数 即 3*x**2diff(z1,x).subs(x,5) #在x=5处的导数 即 75#求偏导函数及偏导数...原创 2019-04-15 17:27:29 · 5882 阅读 · 0 评论 -
np.diff函数与内置函数diff函数的简单区别
#np.diff函数求差分import numpy as npq=[1,2,4]np.diff(q,1) #一阶差分 #内置函数diff求导数及导函数import scipy from math import sin,cos,expfrom sympy import *x=Symbol('x')z1=x**3diff(z1,x) #关于x的导函数 即 ...原创 2019-04-15 18:53:15 · 3254 阅读 · 0 评论 -
boosting、bagging、GBDT等集成学习算法的简单比较
分类图:备注:GBDT算法做分类问题时,损失函数如果是指数损失函数时,则算法原理与Adaboost算法相同。分类图制作代码如下:from graphviz import Digraphfig=Digraph(comment='Ensemble learning')fig.node('a','Ensemble learning')fig.node('b','boos...原创 2019-04-13 12:30:33 · 432 阅读 · 0 评论