中位数
单点时限: 10.0 sec
内存限制: 256 MB
“你的地图是一张白纸,所以即使想决定目的地,也不知道路在哪里。”
QQ 小方最近在自学图论。他突然想出了一个有趣的问题:
一张由 n 个点,m 条边构成的有向无环图。每个点有点权 Ai。QQ 小方想知道所有起点为 1 ,终点为 n 的路径中最大的中位数是多少。
一条路径的中位数指的是:一条路径有 n 个点,将这 n 个点的权值从小到大排序后,排在位置 ⌊n2⌋+1 上的权值。
输入格式
第 1 行输入两个正整数 n,m (1≤n≤106,1≤m≤106),表示结点数量和边的数量。
第 2 行输入 n 个由空格隔开的整数 Ai (0≤Ai≤109),表示点权。
接下来 m 行,每行输入两个整数 x,y (1≤x,y≤n),表示有一条 x 指向 y 的单向边,保证给出的图是联通的,可能存在重边。
输出格式
输出一行包含一个整数,表示最大的中位数。如果不存在任何一条起点为 1 ,终点为 n 的路径,则输出 −1 。
样例
input
5 5
1 2 3 4 5
1 2
2 3
3 5
2 4
4 5
output
4
思路:
初看思路:看到此题,首先想到的方法是DFS,记录每条顶点1~n的路径,对路径的上的点权排序,求中位数,最后选择所有中位数中的最大值。这个方法是最容易想到的,但是某些数据超时了未能AC
参考文档后的思路:
参考链接:https://www.cnblogs.com/zhgyki/p/10463444.html
动态规划 + 二分
动态规划:借鉴DAG求图中的固定端点的最长路径思想,DAG中求的是最长的路径,此题求的是固定端点的最大点权路径和。
这里需要用到一个技巧:即二分试探到合适的中位数。更新每个点权,>=mid的,点权置为1,<mid的点权置为-1,如果存在一条路径的点权之和>=0, 说明存在一条路径,其中位数>=mid,因此可以试探比mid更大的数。如果最大点权路径和<0,不存在路径使得路径中位数>=mid,应该试探更小的mid。这里就用到了二分的思想了。
动态规划+二分的方法在时间性能上应该是高于DFS的,最后AC了。
//DAG------- 邻接表版
#include<stdio.h>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
const int maxv = 1000005;
const int INF = 1000000000;
int n,m;
bool vis[maxv] = {false};
int dp[maxv];//dp[i] 从点i到n的路径中,最大的点权之和
int W[maxv], W2[maxv];
vector<int> Adj[maxv];
int DP(int x){
//从x到n的路径 最大点权之和
if(vis[x])return dp[x];
vis[x] = true;
for(int i=0;i<Adj[x].size();i++){
int j = Adj[x][i];
dp[x] = max(dp[x], W2[x] + DP(j));
}
return dp[x];
}
bool check(int mid){
//更新点权
for(int i=1;i<=n;i++){
W2[i] = W[i]>=mid?1:-1;
}
memset(vis,false,sizeof(vis));
fill(dp+1,dp+1+n,-INF);
//设置边界
dp[n] = W2[n];
vis[n] = true;
return DP(1) >=0;
}
int main(){
// freopen("in3681.txt","r",stdin);
scanf("%d%d", &n, &m);
for(int i=1;i<=n;i++){
scanf("%d", &W[i]);//读入点权
}
//读入邻接表
int x,y;
for(int i=0;i<m;i++){//x->y
scanf("%d%d", &x, &y);
Adj[x].push_back(y);
}
int low = 0, high = INF, mid;
while(low<=high){
mid = low + (high - low)/2;
if(check(mid)){//mid太小了,实际上的中位数比mid大 或 恰好等于mid
low = mid+1;
}else{//mid太大了。实际上的mid比mid小
high = mid-1;
}
}
printf("%d\n", high);
return 0;
} `
//DAG -----------------逆邻接表版
#include<stdio.h>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
const int maxv = 1000005;
const int INF = 1000000000;
int n,m;//n:顶点数 m:边数
bool vis[maxv] = {false};
int dp[maxv];//dp[i]: 从点i到n的路径中,最大的点权之和
int W[maxv], W2[maxv];//记录点权
vector<int> Adj[maxv];//逆邻接表
int DP(int mid, int x){
if(vis[x])return dp[x];
vis[x] = true;
for(int i=0;i<Adj[x].size();i++){
int j = Adj[x][i];
dp[x] = max(dp[x],DP(mid,j)+W2[x]);
}
return dp[x];
}
bool check(int mid){
//求dp[n]
memset(vis,false,sizeof(vis));
for(int i=1;i<=n;i++){
//更新权值
W2[i] = W[i]>=mid?1:-1;
}
fill(dp+1,dp+n+1,-INF);
dp[1] = W2[1];
vis[1] = true;
return DP(mid, n)>=0;
}
int main(){
// freopen("in3681.txt","r",stdin);
scanf("%d%d", &n, &m);
for(int i=1;i<=n;i++){
scanf("%d", &W[i]);
}
int x,y;
for(int i=0;i<m;i++){
scanf("%d%d", &x, &y);//x->y 逆邻接表
Adj[y].push_back(x);
}
//二分检测
int low = 0, high = INF, mid;
while(low<=high){
mid = low + (high-low)/2;
if(check(mid)){//mid比所求小 也可能等于所求
low = mid+1;
}else{//mid比所求大
high = mid-1;
}
}
printf("%d\n", high);
return 0;
}
`