EfficientAD(CVPR-2023)
一.论文涉及的概念
1. 在线硬例挖掘(Online Hard Example Mining,简称 OHEM):在训练深度学习模型时,模型往往容易正确分类那些易于分类的“简单”样本,而对那些“难”的样本(即分类错误或者置信度较低的样本)处理较差。在线硬例挖掘技术通常在训练过程中动态选择困难样本,逐步“挖掘”出难度高的样本进行训练。在线硬例挖掘的过程:
- 模型训练:训练模型时,先通过当前网络对训练集中的样本进行初步预测。
- 计算难度:对每个样本,根据其分类错误率或模型置信度(例如,预测概率)来判断其是否为“困难样本”。
- 选择难例:从当前训练批次中选择那些困难的样本,作为当前迭代的训练数据。
- 更新模型:仅对这些选中的困难样本进行进一步训练,通过对样本优化,使得模型能够逐步改进其对困难样本的识别能力。