【Anomaly Detection论文阅读记录】EfficientAD: Accurate Visual Anomaly Detection at Millisecon ...(WACV-2023)

EfficientADCVPR-2023

.论文涉及的概念

      1. 在线硬例挖掘(Online Hard Example Mining,简称 OHEM):在训练深度学习模型时,模型往往容易正确分类那些易于分类的“简单”样本,而对那些“难”的样本(即分类错误或者置信度较低的样本)处理较差。在线硬例挖掘技术通常在训练过程中动态选择困难样本,逐步“挖掘”出难度高的样本进行训练。在线硬例挖掘的过程:

  • 模型训练:训练模型时,先通过当前网络对训练集中的样本进行初步预测。
  • 计算难度:对每个样本,根据其分类错误率或模型置信度(例如,预测概率)来判断其是否为“困难样本”。
  • 选择难例:从当前训练批次中选择那些困难的样本,作为当前迭代的训练数据。
  • 更新模型:仅对这些选中的困难样本进行进一步训练,通过对样本优化,使得模型能够逐步改进其对困难样本的识别能力。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值