如何查看ssh登录日志信息

本文介绍了SSH登录的日志分析,包括正常登录、退出、密码错误及登录限制。通过`less/var/log/secure|grep'Accepted'`检查正常登录,`iptables`设置允许特定IP的SSH连接以增强安全性。同时,利用`who/var/log/wtmp`查看当前在线用户和机器负载。这些方法有助于提升系统安全性和监控效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

less /var/log/secure | grep 'Accepted'

 

正常登录日志信息

正常退出

密码错误登录

三次密码登陆失败

输入密码时,主动退出

为了安全期间:我们只允许xxx.xxx.xxx.xxx的机器进行SSH连接
iptables -A INPUT -s xxx.xxx.xxx.xxx -p tcp --dport 22 -j ACCEPT

who /var/log/wtmp

 

查看当前在线用户,顺便可查看机器负载情况

w 或 whoo


 

### YOLOv3 模型架构详解 #### 基本组件 DBL (DarknetConv2D_BN_Leaky) YOLOv3 的基础构建模块被称为 DarknetConv2D_BN_Leaky 或者简称 DBL。这一部分由三个紧密相连的部分组成:卷积层、批量归一化(Batch Normalization),以及 Leaky ReLU 激活函数[^4]。 ```python def darknet_conv2d_bn_leaky(x, filters, kernel_size, strides=(1, 1)): """DBL block""" if strides != (1, 1): x = ZeroPadding2D(((1, 0), (1, 0)))(x) x = Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, padding='valid' if strides != (1, 1) else 'same', use_bias=False)(x) x = BatchNormalization()(x) x = LeakyReLU(alpha=0.1)(x) return x ``` #### Residual Blocks 除了上述的基础单元外,YOLOv3 还引入了来自 ResNet 架构的残差块设计思路。这些残差块允许网络变得更深而不易陷入梯度消失问题。具体而言,在 Darknet-53 中存在多个不同大小的残差块,它们通过堆叠若干个 DBL 层来形成更大的特征提取器。 ```python def residual_block(input_layer, num_blocks, out_filters): """Residual Block with multiple DBL blocks inside.""" for i in range(num_blocks): shortcut = input_layer x = darknet_conv2d_bn_leaky(input_layer, out_filters//2, (1, 1)) x = darknet_conv2d_bn_leaky(x, out_filters, (3, 3)) input_layer = Add()([shortcut, x]) return input_layer ``` #### 特征金字塔网络 FPN 和多尺度预测 为了更好地捕捉图像中的目标位置信息并提升检测精度,YOLOv3 使用了一个改进版的特征金字塔网络(Feature Pyramid Network)。该方法通过对不同层次的特征图进行融合操作——即先降低分辨率再逐步恢复至原始尺寸的过程——从而实现了对大中小三种尺度物体的有效识别。 ```python def yolo_body(inputs, num_anchors, num_classes): # Backbone network: Darknet-53 feat1, feat2, feat3 = darknet_body(inputs) # Feature pyramid networks and multi-scale predictions. x, y1 = make_last_layers(feat3, 512, num_anchors * (num_classes + 5)) x = compose( DarknetConv2D_BN_Leaky(256, (1, 1)), UpSampling2D(2))(x) x = Concatenate()([x, feat2]) x, y2 = make_last_layers(x, 256, num_anchors*(num_classes+5)) x = compose( DarknetConv2D_BN_Leaky(128, (1, 1)), UpSampling2D(2))(x) x = Concatenate()([x, feat1]) _, y3 = make_last_layers(x, 128, num_anchors*(num_classes+5)) return Model(inputs, [y1, y2, y3]) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值