Section 1.1

Chapter 1

我主要把书本的主要定理以及例题和大家分享

Section 1.1

Theorem

Theorem1. \quad 对任何 a , b ∈ R a,b \in R a,bR 有如下的三角不等式
∣ a ∣ − ∣ b ∣ ≤ ∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ . \left| a \right| - \left| b \right| \le \left| {a \pm b} \right| \le \left| a \right|{\rm{ + }}\left| b \right|. aba±ba+b.

证明 由 于 − ∣ a ∣ ≤ a ≤ ∣ a ∣ , − ∣ b ∣ ≤ b ≤ ∣ b ∣ , \quad 由于-\left| a \right| \le a \le \left| a \right|, - \left| b \right| \le b \le \left| b \right|, aaa,bbb 两式相加得
− ∣ a ∣ − ∣ b ∣ ≤ a + b ≤ ∣ a ∣ + ∣ b ∣ , - \left| a \right| - \left| b \right| \le a{\rm{ + }}b \le \left| a \right|{\rm{ + }}\left| b \right|, aba+ba+b,

等式右边得证.

Theorem2. \quad 对任何 a , b ∈ R a,b \in R a,bR ε &gt; 0 \varepsilon &gt;0 ε>0,若 ∣ a − b ∣ &lt; ε |a-b|&lt;\varepsilon ab<ε , 则 a = b a=b a=b.

Example

这一节只有一个例题比较少!

Example1. \quad a , b ∈ R a,b \in R a,bR . 证明对任何正数 ε \varepsilon ε a &lt; b + ε a &lt; b + \varepsilon a<b+ε ,则 a ≤ b a \le b ab .

证明 \quad 反正法. 倘若结论不成立,则 a &gt; b a &gt; b a>b .不妨设 ε = a − b &gt; 0 \varepsilon = a - b&gt;0 ε=ab>0 , 但这与 a &lt; b + ε a &lt; b + \varepsilon a<b+ε 矛盾.从而

必有 a &lt; b + ε a &lt; b + \varepsilon a<b+ε.

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值