深度学习
小小的天和蜗牛
一门心思搞技术!
展开
-
深度学习之---起源
1.简介在大多数开始关注深度学习的人都有过一些编程的经历,与此同时也会关注过一些机器学习和深度学习的报道或者文章甚至是书籍。但是更多的时候,深度学习会被冠以更加广义的一种含义:人工智能。其实,在日程应用的大多数的程序都不需要深度学习、人工智能这样的需求。比如:做一个电饭煲的用户界面,可能几个小时就可以写出很多个按钮,以及定义好的规则。像这种问题就可以以目标、应用为方向去做。假如现在有这样的一...原创 2019-04-28 13:34:36 · 2840 阅读 · 0 评论 -
深度学习之---基础
1.介绍作为机器学习的一类,深度学习通常基于神经网络模型逐级表示越来越抽象的概念或模式。既然如此,那就少不了对神经网络的基础知识的回顾。下面就是回顾流程:线性回归softmax回归多层感知机以及过拟合的处理方式正向传播算法、反向传播算法2.线性回归线性回归是一个非常基础的概念,在日常生活中也是非常的常见比如房价预测、气温预测、销售额预测等,基本的一个特征就是输出值是连续的。...原创 2019-04-29 19:17:27 · 1184 阅读 · 2 评论 -
深度学习之---卷积神经网络
1.简介本篇介绍卷积神经网络。今年来深度学习在计算机视觉领域取得突破性成果的基石。目前的工业场景应用也是越来越多,比如自然语言处理、推荐系统和语音识别等领域广泛使用。下面会主要描述卷积神经网络中卷积层和池化层的工作原理,并解释填充、步幅、输入通道和输出通道的含义。后面也会介绍一点比较有代表性的神经网络网络结构,比如:AlexNet、VGG、NiN、GoogLeNet、ResNet、DenseN...原创 2019-05-09 11:34:01 · 3212 阅读 · 1 评论 -
NLP之---word2vec算法skip-gram原理详解
1.词嵌入(word2vec)自然语言是一套用来表达含义的复杂系统。在这套系统中,词是表义的基本单元。顾名思义,词向量是用来表示词的向量,也可被认为是词的特征向量或表征。把词映射为实数域向量的技术也叫词嵌入(word embedding)。近年来,词嵌入已逐渐成为自然语言处理的基础知识。2.为何不采用one-hot向量【如何使用one-hot】假设词典中不同词的数量(词典大小)为NNN...原创 2019-05-19 16:21:45 · 51624 阅读 · 41 评论 -
深度学习之---卷积神经网络中各中操作的作用
【前馈神经网络】前馈神经网络也叫做全连接网络。不过多介绍缺点:在图像识别中会将多维向量平铺成一维向量,会丢失像素点之间的距离关系。无法将局部的权重应用到其他位置,带来的后果就是,如果在一个图像的右上角有一只猫,可以正确分类;当这只猫出现在左下角时,无法正确识别。【局部连接】所谓局部连接就是卷积神经网络。卷积神经网络就是让权重在不同位置共享的神经网络。如上图就是卷积...原创 2019-05-09 21:50:40 · 4252 阅读 · 0 评论