哥德巴赫猜想:
任何大于2的偶数都能够写成两个质数相加的形式。
验证思路:
编写哥德巴赫分解程序,输入一个数,输出他的两个子质数,如果找不到,返回False。遍历整数,查看是否有False的情况,如果有False的情况,我们认为哥德巴赫猜想不成立,如果没有False,我们认为歌德巴赫猜想是不能证伪的。
第一步:质数的判定:
我们可编写函数通过if语句和for循环来判断一个数是否为质数
def isprime(num):
i = 2
while(i<num):
if num%i==0:
return False
i += 1
return True
第二步:歌德巴赫分解
输入一个数,输出他的两个子质数,如果找不到,返回False。
def goldbachresolve(num):
for i in range(2,num):
if isprime(i):
if isprime(num-i):
print(num,'=',i,'+',num-i)
return True
return False
第三步:枚举法验证猜想
遍历一定范围的整数,查看是否有False的情况,如果有False的情况,我们认为哥德巴赫猜想不成立,如果没有False,我们认为歌德巴赫猜想没有被证伪的,也即证明了在选定的整数范围内是成立的。
i=4
while(goldbachresolve(i) and i<1000):
i += 2
运行结果:
可以看出,这个while循环在1000以内并没有退出,说明没有False的案例,所以哥德巴赫猜想在1000以内是成立的!