在学习机器人学的时候,角速度是一个基本的概念,但是越深入看,约发现不少公式无法理解,后来才发现,我对角速度的理解还停留在高中生水平(也就是角速度是转动角度对时间的变化率),这样的认知是没法解释很多深入的内容的,比如螺旋理论、比如机器人运动求解等等。庆幸的是有清华大神对角速度的话题展开了深入的研究,并且发表了文章关于刚体角速度的认识与思考,我看了之后真是拨云见日,相见甚晚,感慨这不愧是清华学者的杰作!
文章指出,我们从中学就开始了解和学习角速度这个物理量.认知也从中学的标量,到大学物理中的矢量。文章通过分析刚体般运动时点的速度和加速度,证明了角速度是二阶张量,同时给出了角速度矢量表达需要满足的条件,明确指出角速度的准确表达必须用张量,角速度的简便表达可以用矢量.最后讨论了几个与角速度相关的问题。
也就是说,中学物理水平下,我们所说的角速度仅仅是质点圆周运动的一个标量;大学物理水平下,我们谈论的角速度,是刚体定轴转动的一个矢量,而到了理论物理水平,我们谈论的角速度,是刚体一般运动下位型矩阵的变化张量。
所以,中学物理和大学物理中的角速度只是理论物理下角速度的退化情况,或者说是特殊情况,张量(矩阵)才是角速度的一般存在形式。角速度也不一定是某个角度对时间的导数,我们也不一定能找到刚体的瞬时转轴,这两种都是在特殊情况下的特例。对角速度的认知从点的匀速圆周运动到刚体的定轴转动,从刚体的定轴转动到平面运动,从刚体的平面运动到定点运动及一般运动,历经了几次飞跃!
参考文献:
[1]刘军华, 李俊峰, LIU,等. 关于刚体角速度的认识与思考[J]. 力学与实践, 2018, 01(v.40):79-83.