工地安全帽反光衣识别视频智能分析系统除了可以识别分析工作人员是否佩戴安全帽货哦这穿戴反光衣以外,工地安全帽反光衣识别视频智能分析系统据可视化范畴里的用火和浓烟,即时精确分辨当场严禁吸烟区工作人员抽烟行为和重要监管区突发性着火事件。针对高危环境工作,当工作人员总数超出管理方法规范规定的限制时,会自动报警。当员工进到危险区域和关键监控区域时,监控中心会自动报警,提示安保人员立即到对应地区开展干涉和阻止。

在计算机视觉项目的开发中,OpenCV作为最大众的开源库,拥有了丰富的常用图像处理函数库,采用C/C++语言编写,可以运行在LinuxWindows/Mac等操作系统上,能够快速的实现一些图像处理和识别的任务。此外,OpenCV还提供了iava、python、cudaQ等的使用接口、机器学习的基础算法调用,从而使得图像处理和图像分析变得更加易于上手,让开发人员更多的精力花在算法的设计上。

OpenCV诞生于Intel研究中心,其目的是为了促进CPU密集型应用。为了达到这一目的,Intel启动了多个项目,包括实时光线追踪和三维显示墙。一个在Intel工作的OpenCV作者在访问一些大学时,注意到许多顶尖大学中的研究组(如MIT媒体实验室)拥有很好的内部使用的开放计算机视觉库-(在学生们之间互相传播的代码),这会帮助一个新生从高的起点开始他,她的计算机视觉研究。这样一个新生可以在以前的基础上继续开始研究,而不用从底层写基本函数。

工地安全帽反光衣识别 OpenCV_深度学习

工地安全帽反光衣识别系统对工程施工工区、风险雷区、材料堆放区、施工工地附近等施工工地务必加强监督的主要地域。电子巡更地区视频监控系统技术是管控重要地区的有力防范手段,能够识别贴近、进到电子巡更监控区域的活动目标,识别周边护栏,重要地区流浪人员总体目标,即时精确监控区域侵入,与此同时提升地区安全监督,避免生产事故,防止原材料偷盗。

from PyQt5.Qt import *
from PyQt5.QtCore import QThread,pyqtSignal
import sys
from jiemian import Ui_Form
from tkinter import filedialog
import tkinter as tk
import cv2
import torch
import glob
import ultralytics
from ultralytics import YOLO



class Window(QWidget,Ui_Form):
    def __init__(self):
        super().__init__()
        self.setupUi(self)
        self.setAttribute(Qt.WA_StyledBackground, True)

        self.pushButton_3.clicked.connect(self.get_model)
        #self.pushButton.clicked.connect(self.get_img)
        self.pushButton_2.clicked.connect(self.get_video)
        self.pushButton_4.clicked.connect(self.dectect)

        self.dec_thread = detection_thread()
        self.img_path = ''
        self.video_path = ''
        self.model_path = ''


    def dectect(self):
        self.dec_thread.img_path = self.img_path
        self.dec_thread.video_path = self.video_path
        self.dec_thread.model_path = self.model_path
        self.dec_thread.img.connect(self.show_img)
        self.dec_thread.start()

    def show_img(self, img):
        image = self.resize_img(img, self.label.width(), self.label.height())
        ori_img = QImage(image[:], image.shape[1], image.shape[0], image.shape[1] * 3, QImage.Format_RGB888)
        ori_pixmap_img = QPixmap.fromImage(ori_img)
        self.label.setPixmap(ori_pixmap_img)
        self.label.setAlignment(Qt.AlignCenter)

    def resize_img(self, img, label_w, label_h):
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        if img.shape[0] > label_h or img.shape[1] > label_w:
            size = min(label_h / img.shape[0], label_w / img.shape[1])
        else:
            size = 1
        img = cv2.resize(img, dsize=(int(img.shape[1] * size), int(img.shape[0] * size)), interpolation=cv2.INTER_AREA)
        return img


    def get_video(self):
        root = tk.Tk()
        root.withdraw()
        path = filedialog.askopenfilename()
        if path:
            self.video_path = path
            self.dec_thread.trans = True

    def get_img(self):
        root = tk.Tk()
        root.withdraw()
        path = filedialog.askopenfilename()
        if path:
            self.img_path = path
            self.dec_thread.trans = False

    def get_model(self):
        root = tk.Tk()
        root.withdraw()
        path = filedialog.askopenfilename()
        if path:
            self.model_path = path
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.

结合燧机科技深度神经网络AI智能化算法,对施工工地职工不穿反光服开展抓拍预警信息,识别率可以达到99%之上。该计算方法具备下列特性:适用提交核心管理系统的选择项不会受到光源、背光、强光照和晚间红外感应的危害。适用时间范围自定义,适用设定是不是联接视频语音TTS广播提醒。