1.题目链接。题目大意:给定一个长度为n的数组,数组的元素只有六种情况,问至少移除多少个元素可以使得这个数组成为好的数组。一个好的数组的定义是:首先这个数组的长度是六的倍数,并且可以被分割成m个:4,8,15,16,23,42的序列。注意是序列,不需要连续。
2.这个题目是有一点贪心+一点技巧。首先,4选择和它最近的8配对,8选择和它最近的15配对,以此类推。预处理所有的位置,二分查找看看有多少个符合的序列,然后减去这些序列的六倍就是答案。但是这显然复杂度不是很够,而且边界不好处理。这里很特殊,每个元素再找下一个的时候,相当于一种接力赛一样,把接力棒传给下一个数据,如果能够传到终点,那么就是可以组成一个序列。这里只是一种象征的说法,其实这种技巧再某本书里面讲了,叫做令牌法吧,每个序列的起点获得令牌向下传,看看有多少个传到了终点。
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e5+10;
int main()
{
int n;
scanf("%d",&n);
vector<int>a(n);
for(int i=0;i<n;i++)
{
int v;
scanf("%d",&v);
if(v==4)a[i]=1;
if(v==8)a[i]=2;
if(v==15)a[i]=3;
if(v==16)a[i]=4;
if(v==23)a[i]=5;
if(v==42)a[i]=6;
}
vector<int>cur(7);
cur[0]=n;
for(int i=0;i<n;i++)
{
if(cur[a[i]-1]>0)
{
++cur[a[i]];
--cur[a[i]-1];
}
}
int ans=n-6*cur[6];
printf("%d",ans);
}