给定K个整数组成的序列{ N1, N2, ..., NK },“连续子列”被定义为{ Ni, Ni+1, ..., Nj },其中 1≤i≤j≤K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。
本题旨在测试各种不同的算法在各种数据情况下的表现。各组测试数据特点如下:
- 数据1:与样例等价,测试基本正确性;
- 数据2:102个随机整数;
- 数据3:103个随机整数;
- 数据4:104个随机整数;
- 数据5:105个随机整数;
输入格式:
输入第1行给出正整数K (≤100000);第2行给出K个整数,其间以空格分隔。
输出格式:
在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。
输入样例:
6
-2 11 -4 13 -5 -2
输出样例:
20
//在线处理算法
#include<bits/stdc++.h>
using namespace std;
int maxSubSeqSum(vector<int>& arr){
int res=0;
int tmp=0;
for(int i=0;i<arr.size();i++){
tmp+=arr[i];
res=max(res,tmp);
tmp=max(0,tmp);
}
return res;
}
int main(){
int k;
cin>>k;
vector<int> arr(k,0);
for(int i=0;i<k;i++){
cin>>arr[i];
}
cout<<maxSubSeqSum(arr)<<endl;
return 0;
}