论文学习Model-Driven GAN-Based Channel Modeling for IRS-Aided Wireless Communication

创新点:

①首先,我们考虑单用户的情况下,提出了一个基于GAN的框架,称为IRS-GAN,它由一个生成模型和一个判别模型。生成模型预期学习以产生遵循真实反射信道分布的随机信道样本,且判别模型用于将真实信道样本与由生成模型产生的随机产生的信道样本区分开。所提出的框架对应于一个极大极小两人博弈,其中生成模型和判别模型在训练过程中相互竞争。经训练的生成模型可以输出与真实样本一样相似的信道样本,并且它可以被解释为信道样本生成函数,其中所学习的网络参数用作信道分布参数。值得注意的是,训练GAN是很困难的,因为两个模型之间的极大极小博弈需要精心制作,特别是在学习IRS相关通道的高维分布时。为了简化IRS-GAN的训练,我们在这项工作中利用了模型驱动DL的思想,其中在生成模型中考虑了反射通道的特殊结构。具体地,所提出的生成模型主要由三个节点组成,即,BS-IRS(BI)节点、IRS-用户(IU)节点和级联(C)节点,它们被假定为分别近似BS-IRS信道、近似IRS-用户信道以及学习级联BS-IRS和IRS-用户信道。我们表明,IRS-GAN的训练过程可以大大简化,采用这种结构,在同一时间的信道建模质量显着提高。此外,考虑到反射通道通常是空间相关的,并且可以被视为2D图像卷积神经网络(CNN)由于其高效特征提取的能力而被用于生成模型中。同样,在判别模型中,CNN也被用来提取反射通道的高维特征。受Wasserstein GAN(WGAN)[27],[28]的启发,我们建议使用基于Wasserstein距离的损失函数,该函数能够保证IRS-GAN的稳定收敛。在损失函数中加入梯度惩罚项和矩惩罚项,以加快训练过程

②其次,我们考虑了一般的多用户的情况下,与不同的用户相关联的反射信道需要建模。注意,在这种情况下,简单地多次复制在单用户情况下使用的IRS-GAN是非常低效的,因为网络参数的数量可能相当大,并且这可能导致低训练速度和高硬件成本。为了减少网络参数的数量并简化训练过程,我们提出了一种多用户IRS-GAN框架(以下称为IRS-GAN-M),其中与不同用户相关联的反射信道之间的强相关性,即,IRS反射元件通过相同的IRS-BS信道将来自BS的信号反射到不同的用户。因此,IRS-GAN-M中的生成模型仅由一个BI节点、K个IU节点和K个C节点组成,其中K是用户的数量。基于这种结构,与多个单用户IRS-GAN的朴素方案相比,与不同用户相关联的反射信道可以用更少的网络参数同时建模。与每个用户相关联的判别模型与单用户情况下的IRS-GAN相同。提出了一种新的联合损失函数和多用户联合学习策略。此外,我们证明了在所提出的IRS-GAN-M中,生成模型和K个判别模型之间的极小极大博弈可以达到最优,只要它们具有足够的容量。

③最后,通过使用规范信道模型和专业信道仿真软件生成的信道数据,给出了大量的数值结果来验证所提出的IRS-GAN和IRS-GAN-M的有效性。我们表明,在单用户和多用户的情况下,反射信道分布可以有效地学习

1. SYSTEM MODEL

IRS N个元件

K个单天线用户

基站M天线

IRS每个反射原件都有独立的相移控制

我们考虑经典的基于独立扩散散射体的IRS模型[29],该模型解释了IRS的基本性质,并且是最广泛采用的IRS模型之一[5]-[9]。

如果角反射系数矩阵Θ = diag([θ1,···,θN]),则在Uk处的接收信号可以写为

以及x = 求和 wksk是由BS发送的复信号,其中sk和wk分别表示用于Uk的信息符号和有效预编码向量。

捕获BS IRS和IRS用户信道是非常困难的,为了解决这个问题,我们将从BS经由IRS到Uk的反射信道定义为

可以观察到,基于BS用户和BS-IRS用户链路的瞬时CSI的知识,BS处的主动发送预编码向量和/或IRS处的被动相移可以被单独地或联合地优化,以实现IRS辅助的无线系统的潜力,参见例如,[6],[8],[9].

为了减少信道训练开销,可以利用统计CSI因为它与瞬时CSI相比变化得慢得多[9]、[30]、[31]。通过有效的信道建模,我们可以重新生成大量的信道样本,并相应地获得统计CSI,例如,信道矩阵的统计平均值和协方差等。然而,由于需要无线通信领域的广泛知识和经验,特别是当考虑MIMO通信系统时,精确的信道建模非常困难。为了解决这个困难,我们利用DL技术的强大功能来学习反射的信道分布,并据此提出了新的模型驱动的基于GAN的单用户和多用户信道建模方法。(在MIMO通信系统中,信道矩阵是高维的,并且通常难以表征任意高维概率密度函数[32]。)

2. IRS-GAN FOR SINGLE-USER SYSTEM

A. Preliminaries of GAN

GAN是一种通过对抗过程进行分布学习的新框架,其目的是学习一种生成模型,该模型能够产生接近某些目标分布的样本[22],[27],[28]。与经典的基于马尔可夫链的生成方法不同,例如去噪自动编码器[33]和生成随机网络[34],它们只能学习模糊的目标分布,GAN在生成过程中不需要反馈回路,它们可以表示非常尖锐,甚至退化的分布。此外,与专注于学习样本近似似然的变分自编码器(VAE)[35]相比,GAN可以在目标函数的定义方面提供更大的灵活性。由于这些优点,基于GAN的方法已被广泛用于学习各种类型数据的概率分布,例如自然图像,语音音频波形和自然语言语料库中的符号等。

IRS-GAN框架,考虑级联BS-IRS-用户信道的结构,用于学习信道分布。所提出的框架由生成模型FG判别模型FD组成,其中随机噪声由FG变换成信道样本,并且该生成的样本或真实信道样本由FD接受以产生表示输入样本来自真实信道分布的概率的真实的值。

采用了模型驱动的DL技术[36],并提出将其与GAN结合联合收割机来解决所考虑的IRS信道建模问题。具体而言,模型驱动DL技术[36]是用于加速神经网络训练过程的最流行和最有前途的方法之一,并且它已成功应用于许多其他通信问题,例如用于大规模MIMO检测的LcgNet [37],用于毫米波信道估计的LampResNet [38]和OFDM自动编码器[39]等。我们基于反射信道是BS-IRS和IRS用户信道的级联的先验知识来设计所提出的IRS-GAN框架中的网络结构。

B. Proposed IRS-GAN Framework

生成器:

因此整体表达为

判别器:

输出pk表示从真实信道分布中提取Hk的概率。

C. Learning Strategy

损失函数为

FD(Hk;ΘG)表示FD判定真实信道样本来自真实信道数据集的概率,并且FD (FG(zBI,zIU;ΘG);ΘD)表示FD判定生成的伪信道样本来自真实信道数据集的概率;

因此学习步骤为:

①首先,我们通过最小化LD和梯度惩罚项

B为批量

请注意,由于使用了权重裁剪,WGAN有时仍然会生成较差的样本或无法收敛[27]。

②我们建议向添加矩罚项LG,使得FG被迫专注于学习真实信道样本中包含的统计信息。具体地,在生成循环中,通过最小化

来学习相应的网络参数,其中

因此,FG预期产生具有与真实信道分布类似的期望的分布,这有助于加速训练过程,特别是当信道具有大的确定性(LoS)分量时。

③最后,用于训练偏置项的初始学习率(即,ΘB {BBI,bIU})被设置为大于用于训练其他网络参数的值(即,ΘO ={θBI,θIU,θC}和ΘD)。这种修改使得所提出的IRS-GAN能够快速学习LoS分量,然后逐渐近似NLoS分量的分布。

此外,通过使用Adam优化器Adam(·,·,α,β1,β2)最小化相应的损失函数来更新所提出的IRS-GAN中的所有网络参数,其中α是学习率,β1和β2是一阶和二阶矩估计的指数衰减率[41]。

3. IRS-GAN-M FOR MULTIUSER SYSTEM

A. Proposed IRS-GAN-M

B. Joint Learning Strategy

对于任一用户有

损失函数为

C. Optimality Analysis

  • 38
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
可执行UML(Executable UML)是一种基于模型驱动架构(Model-Driven Architecture,MDA)的建模方法。MDA是一种软件开发方法论,强调将系统设计和实现的过程建立在模型之上。与传统的编码开发相比,MDA通过使用可执行UML实现了更高层次的自动化。 可执行UML提供了一种更具体和精确的UML语言扩展,可以用于描述系统的行为和交互。这种扩展允许开发人员将UML模型和代码直接关联起来,并通过模型转换和代码生成实现系统的自动生成。通过将模型与代码保持同步,可执行UML提供了一种可追踪性和可验证性的方式,以确保模型和实际代码保持一致。 可执行UML还提供了一个基于模型的执行环境,使开发人员能够在模型级别上进行实时的系统调试和测试。这种模型驱动的调试和测试方法使开发人员能够更早地发现和解决系统中的问题,减少了传统开发方法中的迭代和修复成本。 通过使用可执行UML,开发人员可以更好地理解和控制系统的复杂性。它提供了一个统一的模型化语言,使得不同团队之间的交流更加顺畅。此外,可执行UML还提供了一种将业务流程和系统需求直接转化为可执行代码的方法,从而更加直观地与业务逻辑进行对应和验证。 总而言之,可执行UML作为模型驱动架构的基础,通过提供更具体的模型语言扩展、模型与代码的自动生成以及模型级别的调试和测试环境,提供了一种更高效和可靠的软件开发方法。它使得开发人员能够更好地理解和控制系统的复杂性,并以更精确的方式与业务需求对接。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值