1.安装Amos结构方程模型分析软件的方法
2.如何不显示我的电脑、回收站等图标?
3.SPSS计算极值、平均值、中位数、方差、偏度、峰度、变异系数
4.无需代码绘制人工神经网络ANN模型结构图的方法
5.论文的技术路线流程图如何绘制?
6.电脑缩放异常、显示亮度无法调整的处理办法
7.EndNote参考文献格式Output Styles界面介绍
8.Windows电脑环境变量(用户变量、系统变量)的修改
9.如何修改电脑的BIOS密码?
10.叶绿素含量测定仪SPAD-502怎么使用?
11.全球都有哪些高光谱遥感卫星?
12.创建Anaconda虚拟Python环境的方法
13.Anaconda虚拟环境配置Python库与Spyder编译器
14.小提琴图的绘制方法:Python matplotlib实现
15.如何用CAN-EYE获取植被参数数据?
16.ArcMap属性表出现乱码情况的解决
17.考研保研、夏令营推免的简历模板
18.安装MicroStation软件、Terrasolid插件的方法
19.VMware虚拟机部署Linux Ubuntu系统的方法
20.在Linux Ubuntu系统中部署C++环境与Visual Studio Code软件
21.安装Visual Studio的详细流程
22.获取Visual Studio所用MSVC编译器版本:_MSC_VER数值
23.Visual Studio部署C++矩阵库Armadillo的方法
24.如何在Visual Studio新C++项目中调用之前配置过的库?
25.在Visual Studio中部署GDAL库的C++版本(包括SQLite、PROJ等依赖)
26.C++遴选出特定类型的文件或文件名符合要求的文件
27.初步上手Git软件及GitHub平台:基本操作方法
28.下载、安装Git并拷贝GitHub项目到本地的流程
29.Visual Studio部署matplotlib绘图库的C++版本
30.Anaconda与Python环境在Windows中的部署
31.Windows配置R语言、RStudio开发环境
32.Visual Studio部署C++环境下OpenCV库
33.ArcMap的mxd文件没有数据、显示感叹号怎么办?
34.绘制三元图、颜色空间图:R语言代码
35.Linux电脑如何下载QGIS?
36.Python表格处理模块xlrd在Anaconda中的安装
37.Postman模拟浏览器网页请求并获取网页数据
38.多次复制Excel符合要求的数据行:Python批量实现
39.电脑开机时报错No Bootable Device找不到索引的解决方法
40.论文研究区域图的制作方法:ArcGIS
41.修改中文、英文参考文献在文末列表中的顺序:EndNote
42.ArcPy自动绘制大量地图并设置地图要素:Python
43.Python提取文本文件(.txt)数据的方法
44.将大量文件的拓展名中大写字母改为小写:Python实现
45.浏览器打开JupyterLab后所有快捷键与窗口按键均失效怎么办?
46.将编译过的C++库迅速部署在Visual Studio新项目中
47.EndNote里参考文献的期刊名显示错误怎么办?
48.找出长时序遥感影像的缺失日期并用像素均为0的栅格填充缺失日期的文件
49.Python依据遥感影像的分幅筛选出对应的栅格文件
50.Python结合文件名称将多个文件复制到不同路径下
51.mklink命令使得OneDrive同步任意一个文件夹
52.在Ubuntu系统安装Anaconda及Python
53.GIS数据获取:土地利用与土壤属性、DEM、水体水系数据
54.配置h5py、netCDF4库的方法:Anaconda环境
55.核对不同文件夹所含内容的差异并提取缺失内容:Python代码
56.坚果云与floccus实现Chrome书签国内跨设备、跨平台同步
57.基于FileZilla上传、下载服务器数据的方法
58.Python按条件筛选、剔除表格数据并绘制剔除前后的直方图
59.R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
60.Linux服务器PBS任务队列作业提交脚本的使用方法
61.
Python按条件删除Excel表格数据的方法
62.PowerShell快速修改多个文件的名称
63.用whl文件安装Anaconda中的GDAL
64.ArcGIS创建渔网工具的使用方法
65.Python自动复制Excel数据:将各行分别重复指定次数
66.Python批量分割Excel后逐行做差、合并文件的方法
67.Python将表格文件中某些列的数据整体向上移动一行
本文介绍基于Python语言,读取Excel表格文件,基于我们给定的规则,对其中的数据加以筛选,将不在指定数据范围内的数据剔除,保留符合我们需要的数据的方法。
首先,我们来明确一下本文的具体需求。现有一个Excel表格文件(在本文中我们就以.csv
格式的文件为例),如下图所示。
其中,Excel表格文件具有大量的数据,每一列表示某一种属性,每一行表示某一个样本;我们需要做的,就是对于其中的部分属性加以数据筛选——例如,我们希望对上图中第一列的数据进行筛选,将其中大于2
或小于-1
的部分选出来,并将每一个所选出的单元格对应的行直接删除;同时,我们还希望对其他的属性同样加以筛选,不同属性筛选的条件也各不相同,但都是需要将不符合条件的单元格所在的整行都删除。最终,我们保留下来的数据,就是符合我们需要的数据,此时我们需要将其保存为一个新的Excel表格文件。
明白了需求,我们即可开始代码的撰写;本文用到的具体代码如下所示。
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 7 15:40:50 2023
@author: fkxxgis
"""
import pandas as pd
original_file = "E:/01_Reflectivity/99_Model_Training/00_Data/02_Extract_Data/23_Train_model_NoH/Train_Model_1_NoH.csv"
result_file = "E:/01_Reflectivity/99_Model_Training/00_Data/02_Extract_Data/23_Train_model_NoH/Train_Model_1_NoH_New.csv"
df = pd.read_csv(original_file)
df = df[(df["inf"] >= -0.2) & (df["inf"] <= 18)]
df = df[(df["NDVI"] >= -1) & (df["NDVI"] <= 1)]
df = df[(df["inf_dif"] >= -0.2) & (df["inf_dif"] <= 18)]
df = df[(df["NDVI_dif"] >= -2) & (df["NDVI_dif"] <= 2)]
df = df[(df["soil"] >= 0)]
df = df[(df["inf_h"] >= -0.2) & (df["inf_h"] <= 18)]
df = df[(df["ndvi_h"] >= -1) & (df["ndvi_h"] <= 1)]
df = df[(df["inf_h_dif"] >= -0.2) & (df["inf_h_dif"] <= 18)]
df = df[(df["ndvi_h_dif"] >= -1) & (df["ndvi_h_dif"] <= 1)]
df.to_csv(result_file, index = False)
下面是对上述代码每个步骤的解释:
- 导入必要的库:导入了
pandas
库,用于数据处理和操作。 - 定义文件路径:定义了原始文件路径
original_file
和结果文件路径result_file
。 - 读取原始数据:使用
pd.read_csv()
函数读取原始文件数据,并将其存储在DataFrame对象df
中。 - 数据筛选:对DataFrame对象
df
进行多个条件的筛选操作,使用了逻辑运算符&
和比较运算符进行条件组合。例如,其中的第一行df["inf"] >= -0.2
和df["inf"] <= 18
就表示筛选出"inf"
列的值在-0.2
到18
之间的数据;第二行df["NDVI"] >= -1
和df["NDVI"] <= 1
则表示筛选出"NDVI"
列的值在-1
到1
之间的数据,以此类推。 - 保存结果数据:使用
to_csv()
函数将筛选后的DataFrame对象df
保存为新的.csv
文件,保存路径为result_file
,并设置index=False
以避免保存索引列。
当然,如果我们需要对多个属性(也就是多个列)的数据加以筛选,除了上述代码中的方法,我们还可以用如下所示的代码,较之前述代码会更方便一些。
result_df = result_df[(result_df["blue"] > 0) & (result_df["blue"] <= 1) &
(result_df["green"] > 0) & (result_df["green"] <= 1) &
(result_df["red"] > 0) & (result_df["red"] <= 1) &
(result_df["inf"] > 0) & (result_df["inf"] <= 1) &
(result_df["NDVI"] > -1) & (result_df["NDVI"] < 1) &
(result_df["inf_dif"] > -1) & (result_df["inf_dif"] < 1) &
(result_df["NDVI_dif"] > -2) & (result_df["NDVI_dif"] < 2) &
(result_df["soil"] >= 0) &
(result_df["NDVI_dif"] > -2) & (result_df["NDVI_dif"] < 2) &
(result_df["inf_h_dif"] > -1) & (result_df["inf_h_dif"] < 1) &
(result_df["ndvi_h_dif"] > -1) & (result_df["ndvi_h_dif"] < 1)]
上述代码可以直接对DataFrame对象加以一次性的筛选,不用每筛选一次就保存一次了。
运行本文提及的代码,我们即可在指定的结果文件夹下获得数据筛选后的文件了。
至此,大功告成。
原创作者: fkxxgis 转载于: https://www.cnblogs.com/fkxxgis/p/18350610