LeetCode题解:递归乘法

递归乘法

递归乘法。 写一个递归函数,不使用 * 运算符, 实现两个正整数的相乘。可以使用加号、减号、位移,但要吝啬一些。

方法一:乘法转加法

A*B 可转化为 B 个 A相加,为了减少加法的运算,选择较大的数进行相加,例如:

9 * 3 = 9 + 9 * 2

​ = 9 + 9 + 9 * 1

class Solution {
    public int multiply(int A, int B) {
        int temp;
        if (A < B){
           temp = A;
           A = B;
           B = temp;
        }
        if (B > 0){
            return multiply(A, B - 1) + A;
        }
        return 0;
    }
}

方法二:利用位运算

位运算左移一位相当于*2,右移一位相当于/2, 可代替乘法,选择其中较小的数min看包含多少个2,如果为奇数可当做(min - 1)* max + max,例如

3 * 9 = 1 * 9 * 2 + 9

4 * 9 = 2 * (9 * 2)= 1 * (9 * 2) * 2

class Solution {
    public int multiply(int A, int B) {
        int min = Math.min(A, B);
        int max = Math.max(A, B);
        int res; 
        
        if (min < 1){
            return 0;
        }

        if ((min & 1) == 1){
            res = multiply(min>>1, max<<1) + max;
        }else{
            res = multiply(min>>1, max<<1);
        }
        return res;
    }
}

方法三:快速幂

将其中较小的数min转化为二进制数,即为2的幂的和,分别与max相乘,例如

6 * 11 = 6 * (8 + 2 + 1)= 6 << 3 + 6 << 1 + 6 << 0

class Solution {
    public int multiply(int A, int B) {
        int min = Math.min(A, B);
        int max = Math.max(A, B);
        int res = 0; 
        
        for (int i = 0; min > 0; i++){
            if ((min & 1) == 1){
                res += (max << i);
            }
            min >>= 1;
        }
        return res;
    }
}

快速幂用递归的方式为

class Solution {
    int res = 0;
    public int multiply(int A, int B) {
       	int min = Math.min(A, B);
        int max = Math.max(A, B);
        mul(min, max, 0);
        return res;
    }
    public void mul(int min,int max,int i){
        if((min >> i) == 0) {
            return;
        }
        if(((min >> i) & 1) == 1){
            res += (max << i);
        }
        mul(min, max, i + 1);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值