LLM大模型推理加速实战:vllm、fastllm与llama.cpp使用指南

本文介绍了vllm、fastllm和llama.cpp三种大模型推理加速工具,分别基于剪枝、量化和底层优化技术,提供安装、使用和优化实践,以提升性能和速度,同时强调了选择策略、性能速度平衡及技术更新的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

随着人工智能技术的飞速发展,大型语言模型(LLM)在诸如自然语言处理、智能问答、文本生成等领域的应用越来越广泛。然而,LLM模型往往具有庞大的参数规模,导致推理过程计算量大、耗时长,成为了制约其实际应用的关键因素。为了解决这个问题,一系列大模型推理加速工具应运而生,其中vllm、fastllm和llama.cpp就是其中的佼佼者。本文将逐一介绍这三个工具的使用教程,并分享大模型推理的实践经验。

一、vllm使用教程
vllm是一个基于剪枝技术的大模型推理加速工具,通过去除模型中的冗余参数,可以在保证模型性能的同时显著减少推理时间。以下是使用vllm的基本步骤:

安装vllm库:从GitHub上克隆vllm的仓库,并按照官方文档进行安装。

加载预训练模型:使用vllm提供的API加载你想要加速的LLM模型。

模型剪枝:调用vllm的剪枝函数对模型进行剪枝,设置合适的剪枝率以达到最佳性能和速度的平衡。

推理:使用剪枝后的模型进行推理,你将发现推理速度得到了显著提升。

二、fastllm使用教程
fastllm是一个基于量化技术的大模型推理加速工具,通过降低模型参数的精度,可以在保证模型性能的同时减少推理所需的计算资源和内存占用。以下是使用fastllm的基本步骤:

安装fastllm库:从GitHub上克隆fastllm的仓库,并按照官方文档进行安装。

加载预训练模型:使用fastllm提供的API加载你想要加速的LLM模型。

模型量化:调用fastllm的量化函

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值