闯闯爱打鼓
码龄7年
关注
提问 私信
  • 博客:7,503
    7,503
    总访问量
  • 4
    原创
  • 529,480
    排名
  • 2
    粉丝
  • 0
    铁粉

个人简介:高分子硕士,数学,机器学习以及数据挖掘爱好者。想从事方向:数据驱动新材料的发现,Data driven the discovery of new material .微信号:FlyingZeSky

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2018-03-25
博客简介:

weixin_41899207的博客

查看详细资料
个人成就
  • 获得1次点赞
  • 内容获得1次评论
  • 获得28次收藏
创作历程
  • 5篇
    2020年
成就勋章
兴趣领域 设置
  • 人工智能
    数据分析
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

数据分析降维之抽取主成分(PCA)

现实世界导出都是高维度数据,甚至数据特征数都比数据量多。这个时候一些算法无法计算,在许多应用中不在适用。 降维技术是解决这个问题的很好办法,但是降维过程中应该尽可能保留数据的结构,这样才能减少运行时间并且数据真实信息尽可能多的保留。 这篇博客将主要讲解抽取主成分(principalComponentAnalysis,PCA),它是一种无监督方法。对于多变量问题,PCA在降维时只有很小的信息...
原创
发布博客 2020.04.28 ·
908 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

EM算法-细节讲解公式推导

EM算法: EM算法是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计,或极大后验概率估计。EM算法的每次迭代由两步组成:E步,求期望;M步,求极大。所以这一算法称为期望极大算法(expectationmaximizaiton)。 EM算法的引入: 概率模型有时候含有观测变量,又含有隐变量或潜在变量,如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计法,或贝叶斯估...
原创
发布博客 2020.04.26 ·
725 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

朴素贝叶斯算法例题与代码实践

即之前写了朴素贝叶斯算法的理论部分(https://blog.csdn.net/weixin_41899207/article/details/105714493) 现在找些例子与代码总结一下。 例题1. 试由下表的训练数据学习一个朴素贝叶斯分类器并确定x=(2,S)T的类标记y。表中X(1)和X(2)为特征,取值的集合分别为A1={1,2,3},A2={S,M,L},Y为类标记,Y属于C=...
翻译
发布博客 2020.04.23 ·
5072 阅读 ·
1 点赞 ·
1 评论 ·
24 收藏

朴素贝叶斯算法(理论部分)-Theory of naive Bayes

1.朴素贝叶斯概念: 朴素贝叶斯是基于贝叶斯公式与特征条件独立假设的分类方法(注:贝叶斯公式是数学定义,朴素贝叶斯是机器学习算法)。朴素贝叶斯基于输入和输入的联合概率分布,对于给定的输入,利用贝叶斯公式求出后验概率最大的输出y。即可以总结为以下三点 1.已知类条件概率密度函数表达式和先验概率 2.利用贝叶斯公式转换成后验概率 3.根据后验概率大小进行决策分类 *贝叶斯公式: 2.基...
原创
发布博客 2020.04.23 ·
592 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Datawhale-Learning-Task-1

线性回归总结 线性回归的概念 原理。 损失函数、代价函数、目标函数。 优化方法(梯度下降、牛顿法、拟牛顿法)。 线性回归的评估。 sklearn代码参数解释。 1.线性回归的原理 医生初次判断一个人身体情况,在做一些检测之前,可以通过判断一个人是否抽烟、喝酒、锻炼、熬夜、家庭是否有遗传疾病等各种因素来推测其身体健康情况。这里假设用x1,x2,x3,x4,x5等变量表示抽烟、喝酒、锻炼、...
原创
发布博客 2020.04.20 ·
205 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏