AI工具导航中心技术文档
概述
这段时间一直在忙活的我的AI工具信息平台,终于告一段落,暂时就这样了。先与大家分享一下技术文档。源码暂不公布了。
本文档描述基于Streamlit构建的AI工具导航中心的技术实现,该系统整合了900+ AI工具资源,提供智能分类、实时搜索、教程管理等功能。
系统架构
核心功能模块
1. 数据处理流水线
2. 混合分类器架构
- 规则引擎:基于关键词匹配的快速分类
- BERT模型:文本语义特征提取(使用bert-base-multilingual模型)
- 机器学习模型:TF-IDF + 朴素贝叶斯备选方案
3. 实时搜索引擎
- 集成Serper API实现Google搜索
- 支持多维度过滤:
- 国家/地区
- 流行度范围
- 开源标识
- 更新时效性
4. 教程管理系统
- 多维度教程标签:
TUTORIAL_META = { "type": ["视频教程", "文档指南", "实战案例"], "difficulty": {"初级": 1, "中级": 2, "高级": 3}, "compatibility": ["通用", "Windows", "macOS", "Linux"] }
5. 书签功能设计
- 多级分类存储结构:
{ "category": "开发资源", "items": [ { "title": "TensorFlow官方文档", "url": "https://tensorflow.org", "tags": ["机器学习", "深度学习"], "timestamp": "2024-03-15" } ] }
关键技术指标
模块 | 性能指标 | 技术实现 |
---|---|---|
数据加载 | 900+工具加载时间<2s | Pandas并行处理 |
分类预测 | 平均响应时间<800ms | 规则引擎优先策略 |
实时搜索 | 结果返回<1.5s | 异步请求处理 |
界面渲染 | FPS>45 | 组件虚拟化技术 |
部署说明
环境要求
Python 3.9+
依赖库:
streamlit==1.32.0
pandas==2.1.3
scikit-learn==1.4.0
transformers==4.36.0
安装步骤
- 克隆仓库
git clone https://github.com/example/ai-tools-navigator.git
- 安装依赖
pip install -r requirements.txt
- 配置环境
# config.py
class EnhancedConfig:
SERPER_API_KEY = 'your_api_key' # 必填
DATA_DIR = Path('./data') # 数据目录
- 运行系统
streamlit run main.py
扩展接口
系统提供以下API端点供集成使用:
端点 | 方法 | 参数 | 描述 |
---|---|---|---|
/api/tools | GET | category, country | 获取工具列表 |
/api/search | POST | {“query”: “text”} | 执行智能搜索 |
/api/classify | POST | {“text”: “description”} | 文本分类服务 |
运行截图: