Apache Flink 实时计算-深入理解 Checkpoint和Savepoint

欢迎关注我的公众号:【雷克分析】 ,我是雷克,我专注于程序员经验、量化交易、大数据 & 数据库、AI大模型的分享, 欢迎关注 。

前言

为了保证程序的容错恢复以及程序启动时其状态恢复,几乎所有公司的实时任务都会开启 Checkpoint 或者触发 Savepoint 进行状态保存。为了使得用户更加理解这两点区别,本文结合 Flink 1.9 版本,重点讲述 Flink Checkpoint,Savepoint 相关概念以及注意事项,同时也会讲述实时任务启动时读取 Kafka 偏移量问题,使得用户能够更好的开发实时任务。

1. Checkpoint,Savepoint 异同

首先,为什么会在文章开头对这两点进行介绍,因为有时候用户在开发实时任务时,会对这两点产生困惑,所以这里直接开门见山对这两点进行讲解。

Flink Checkpoint 是一种容错恢复机制。 这种机制保证了实时程序运行时,即使突然遇到异常也能够进行自我恢复。Checkpoint 对于用户层面,是透明的,用户会感觉程序一直在运行。Flink Checkpoint 是 Flink 自身的系统行为,用户无法对其进行交互,用户可以在程序启动之前,设置好实时程序 Checkpoint 相关参数,当程序启动之后,剩下的就全交给 Flink 自行管理。当然在某些情况,比如 Flink On Yarn 模式,某个 Container 发生 OOM 异常,这种情况程序直接变成失败状态,此时 Flink 程序虽然开启 Checkpoint 也无法恢复,因为程序已经变成失败状态,所以此时可以借助外部参与启动程序,比如外部程序检测到实时任务失败时,从新对实时任务进行拉起。

Flink Savepoint 你可以把它当做在某个时间点程序状态全局镜像,以后程序在进行升级,或者修改并发度等情况,还能从保存的状态位继续启动恢复。 Flink Savepoint 一般存储在 HDFS 上面,它需要用户主动进行触发。如果是用户自定义开发的实时程序,比如使用DataStream进行开发,建议为每个算子定义一个 uid,这样我们在修改作业时,即使导致程序拓扑图改变,由于相关算子 uid 没有变,那么这些算子还能够继续使用之前的状态,如果用户没有定义 uid , Flink 会为每个算子自动生成 uid,如果用户修改了程序,可能导致之前的状态程序不能再进行复用。

Flink Checkpoint和Savepoint对比:

  1. 概念:Checkpoint 是 自动容错机制 ,Savepoint 程序全局状态镜像 。
  2. 目的: Checkpoint 是程序自动容错,快速恢复 。Savepoint是 程序修改后继续从状态恢复,程序升级等。
  3. 用户交互:Checkpoint 是 Flink 系统行为 。Savepoint是用户触发。
  4. 状态文件保留策略:Checkpoint默认程序删除,可以设置CheckpointConfig中的参数进行保留 。Savepoint会一直保存,除非用户删除 。

2. Flink Checkpoint

2.1 Flink Checkpoint 原理

Flink Checkpoint 机制保证 Flink 任务运行突然失败时,能够从最近 Checkpoint 进行状态恢复启动,进行错误容忍。它是一种自动容错机制,而不是具体的状态存储镜像。Flink Checkpoint 受 Chandy-Lamport 分布式快照启发,其内部使用分布式数据流轻量级异步快照

Checkpoint 保存的状态在程序取消时,默认会进行清除。Checkpoint 状态保留策略有两种:

  1. DELETE_ON_CANCELLATION 表示当程序取消时,删除 Checkpoint 存储文件。
  2. RETAIN_ON_CANCELLATION 表示当程序取消时,保存之前的 Checkpoint 存储文件。用户可以结合业务情况,设置 Checkpoint 保留模式。

默认情况下,Flink不会触发一次 Checkpoint 当系统有其他 Checkpoint 在进行时,也就是说 Checkpoint 默认的并发为1。针对 Flink DataStream 任务,程序需要经历从 StreamGraph -> JobGraph -> ExecutionGraph -> 物理执行图四个步骤,其中在 ExecutionGraph 构建时,会初始化 CheckpointCoordinator。ExecutionGraph通过ExecutionGraphBuilder.buildGraph方法构建,在构建完时,会调用 ExecutionGraph 的enableCheckpointing方法创建CheckpointCoordinator。CheckpoinCoordinator 是 Flink 任务 Checkpoint 的关键,针对每一个 Flink 任务,都会初始化一个 CheckpointCoordinator 类,来触发 Flink 任务 Checkpoint。下面是 Flink 任务 Checkpoint 大致流程:

img

Flink 会定时在任务的 Source Task 触发 Barrier,Barrier是一种特殊的消息事件,会随着消息通道流入到下游的算子中。只有当最后 Sink 端的算子接收到 Barrier 并确认该次 Checkpoint 完成时,该次 Checkpoint 才算完成。所以在某些算子的 Task 有多个输入时,会存在 Barrier 对齐时间,我们可以在Web UI上面看到各个 Task 的Barrier 对齐时间

2.2 Flink Checkpoint 语义

Flink Checkpoint 支持两种语义:Exactly OnceAt least Once, 默认的 Checkpoint 模式是 Exactly Once. Exactly Once 和 At least Once 具体是针对 Flink 状态 而言。具体语义含义如下:

Exactly Once 含义是:保证每条数据对于 Flink 的状态结果只影响一次。打个比方,比如 WordCount程序,目前实时统计的 “hello” 这个单词数为5,同时这个结果在这次 Checkpoint 成功后,保存在了 HDFS。在下次 Checkpoint 之前, 又来2个 “hello” 单词,突然程序遇到外部异常容错自动回复,从最近的 Checkpoint 点开始恢复,那么会从单词数 5 这个状态开始恢复,Kafka 消费的数据点位还是状态 5 这个时候的点位开始计算,所以即使程序遇到外部异常自我恢复,也不会影响到 Flink 状态的结果。

At Least Once 含义是:每条数据对于 Flink 状态计算至少影响一次。比如在 WordCount 程序中,你统计到的某个单词的单词数可能会比真实的单词数要大,因为同一条消息,你可能将其计算多次。

Flink 中 Exactly Once 和 At Least Once 具体是针对 Flink 任务状态而言的,并不是 Flink 程序对其处理一次。举个例子,当前 Flink 任务正在做 Checkpoint,该次Checkpoint还么有完成,该次 Checkpoint 时间端的数据其实已经进入 Flink 程序处理,只是程序状态没有最终存储到远程存储。当程序突然遇到异常,进行容错恢复,那么就会从最新的 Checkpoint 进行状态恢复重启,上一部分还会进入 Flink 系统处理:

img

上图中表示,在进行 chk-5 Checkpoint 时,突然遇到程序异常,那么会从 chk-4 进行恢复,那么之前chk-5 处理的数据,会再次进行处理。

Exactly Once 和 At Least Once 具体在底层实现大致相同,具体差异表现在 Barrier 对齐方式处理:

img

如果是 Exactly Once 模式,某个算子的 Task 有多个输入通道时,当其中一个输入通道收到 Barrier 时,Flink Task 会阻塞处理该通道,其不会处理这些数据,但是会将这些数据存储到内部缓存中,一旦完成了所有输入通道的 Barrier 对齐,才会继续对这些数据进行消费处理。

对于 At least Once,同样针对某个算子的 Task 有多个输入通道的情况下,当某个输入通道接收到 Barrier 时,它不同于Exactly Once,At Least Once 会继续处理接受到的数据,即使没有完成所有输入通道 Barrier 对齐。所以使用At Least Once 不能保证数据对于状态计算只有一次影响。

2.3 Flink Checkpoint 参数配置及建议

  1. 当 Checkpoint 时间比设置的 Checkpoint 间隔时间要长时,可以设置 Checkpoint 间最小时间间隔 。这样在上次 Checkpoint 完成时,不会立马进行下一次 Checkpoint,而是会等待一个最小时间间隔,然后在进行该次 Checkpoint。否则,每次 Checkpoint 完成时,就会立马开始下一次 Checkpoint,系统会有很多资源消耗 Checkpoint。
  2. 如果Flink状态很大,在进行恢复时,需要从远程存储读取状态恢复,此时可能导致任务恢复很慢,可以设置 Flink Task 本地状态恢复。任务状态本地恢复默认没有开启,可以设置参数state.backend.local-recovery值为true进行激活。
  3. Checkpoint保存数,Checkpoint 保存数默认是1,也就是保存最新的 Checkpoint 文件,当进行状态恢复时,如果最新的Checkpoint文件不可用时(比如HDFS文件所有副本都损坏或者其他原因),那么状态恢复就会失败,如果设置 Checkpoint 保存数2,即使最新的Checkpoint恢复失败,那么Flink 会回滚到之前那一次Checkpoint进行恢复。考虑到这种情况,用户可以增加 Checkpoint 保存数。
  4. 建议设置的 Checkpoint 的间隔时间最好大于 Checkpoint 的完成时间。

下图是不设置 Checkpoint 最小时间间隔示例图,可以看到,系统一致在进行 Checkpoint,可能对运行的任务产生一定影响:

img

3. Flink Savepoint

3.1 Flink Savepoint 原理

Flink Savepoint 作为实时任务的全局镜像,其在底层使用的代码和Checkpoint的代码是一样的,因为Savepoint可以看做 Checkpoint在特定时期的一个状态快照。

Flink 在触发Savepoint 或者 Checkpoint时,会根据这次触发的类型计算出在HDFS上面的目录:

img

如果类型是 Savepoint,那么 其 HDFS 上面的目录为:Savepoint 根目录+savepoint-jobid前六位+随机数字,具体如下格式:

img

Checkpoint 目录为 chk-checkpoint ID,具体格式如下:

![img](https://img-blog.csdnimg.cn/img_convert/83569a6f519fe600df23dd859e0c6ba9.png

一次 Savepoint 目录下面至少包括一个文件,既 _metadata 文件。当然如果实时任务某些算子有状态的话,那么在 这次 Savepoint 目录下面会包含一个 _metadata 文件以及多个状态数据文件。_metadata 文件以绝对路径的形式指向状态文件的指针。

社区方面,在以前的 Flink 版本,当用户选择不同的状态存储,其底层状态存储的二进制格式都不相同。针对这种情况,目前 [FLIP-41](FLIP-41: Unify Binary format for Keyed State) 对于 Keyed State 使用统一的二进制文件进行存储。这里的 Keyed State 主要是针对 Savepoint 的状态,Checkpoint 状态的存储可以根据具体的状态后端进行存储,允许状态存储底层格式的差异。对于 Savepoint 状态底层格式的统一,应用的状态可以在不同的状态后端进行迁移,更方便应用程序的恢复。重做与状态快照和恢复相关的抽象,当实现实现新状态后端时,可以降低开销,同时减少代码重复。

3.2 Flink Savepoint 触发方式

Flink Savepoint 触发方式目前有三种:

  1. 使用 flink savepoint 命令触发 Savepoint,其是在程序运行期间触发 savepoint。
  2. 使用 flink cancel -s 命令,取消作业时,并触发 Savepoint。
  3. 使用 Rest API 触发 Savepoint,格式为:*/jobs/:jobid /savepoints*

3.3 Flink Savepoint 注意点

  1. 使用 flink cancel -s 命令取消作业同时触发 Savepoint 时,会有一个问题,可能存在触发 Savepoint 失败。比如实时程序处于异常状态(比如 Checkpoint失败),而此时你停止作业,同时触发 Savepoint,这次 Savepoint 就会失败,这种情况会导致,在实时平台上面看到任务已经停止,但是实际实时作业在 Yarn 还在运行。针对这种情况,需要捕获触发 Savepoint 失败的异常,当抛出异常时,可以直接在 Yarn 上面 Kill 掉该任务。
  2. 使用 DataStream 程序开发时,最好为每个算子分配 uid,这样即使作业拓扑图变了,相关算子还是能够从之前的状态进行恢复,默认情况下,Flink 会为每个算子分配 uid,这种情况下,当你改变了程序的某些逻辑时,可能导致算子的 uid 发生改变,那么之前的状态数据,就不能进行复用,程序在启动的时候,就会报错。
  3. 由于 Savepoint 是程序的全局状态,对于某些状态很大的实时任务,当我们触发 Savepoint,可能会对运行着的实时任务产生影响,个人建议如果对于状态过大的实时任务,触发 Savepoint 的时间,不要太过频繁。根据状态的大小,适当的设置触发时间。
  4. 当我们从 Savepoint 进行恢复时,需要检查这次 Savepoint 目录文件是否可用。可能存在你上次触发 Savepoint 没有成功,导致 HDFS 目录上面 Savepoint 文件不可用或者缺少数据文件等,这种情况下,如果在指定损坏的 Savepoint 的状态目录进行状态恢复,任务会启动不起来。

5. 总结

本文没有过多的讲述源码,考虑大家的都能够读懂,其语言竟可能通俗一一点。如果有需要改进的地方,希望大家能够指出。后续我会不断的和大家一起大数据相关的技术,和大家一起交流学习。

参考资料

  1. FLIP-41: Unify Binary format for Keyed State
  2. FLIP-47: Checkpoints vs. Savepoints
  3. Apache Kafka Connector
  4. Apache Flink 1.9 Documentation: Savepoints
  5. Apache Flink 1.9 Documentation: Checkpoints
  6. Apache Flink 1.8 Documentation: Checkpointing

更多精彩内容,欢迎关注我的公众号:【雷克分析】 ,我是雷克,我专注于程序员经验、量化交易、大数据 & 数据库、AI大模型的分享, 欢迎关注 。

在这里插入图片描述

  • 12
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: flink 实时计算是一种流式计算框架,可以用于实时处理大规模数据。词频统计是 flink 实时计算的一个常见应用场景,可以用于统计文本中每个单词出现的频率。初体验可以通过编写简单的代码实现,对 flink 实时计算有一个初步的了解。 ### 回答2: Flink 是一种流数据处理框架,可以进行实时计算和批处理,适用于对实时数据进行分析和处理的场景。其中,词频统计是一个常用的实时应用场景,可以用于分析用户搜索的热门关键词、监控社交媒体的流行话题等等。 使用 Flink 进行词频统计的过程如下: 1. 从数据源中读取数据:可以使用 Flink 提供的多种数据源,例如 Kafka、HDFS、本地文件等等; 2. 进行数据清洗:对数据进行过滤、去重等操作,保证数据的准确性和完整性; 3. 进行分词:将读取到的文本数据进行分词,可以使用开源的中文分词工具,例如 HanLP、jieba 等等; 4. 进行词频统计:通过对每个词语进行计数,得到每个词语的出现次数; 5. 输出结果:将词频统计的结果输出到指定的数据源上,例如 Kafka、HDFS等等。 在实际应用中,基于 Flink 的词频统计可以应用于多种场景。例如在电商网站中,词频统计可以用于分析用户搜索热度,从而为商家提供商品推荐,优化营销策略。又例如在新闻媒体中,词频统计可以用于监控事件热点,分析社交媒体上的流行话题,帮助新闻工作者快速捕捉社会热点。 总之,通过 Flink 实现实时的词频统计,可以帮助企业和个人快速获取实时数据,优化决策和服务。对于初学者来说,可以从简单的单词计数入手,逐步深入理解计算和分布式计算的基本概念,提高数据处理的效率和准确性。 ### 回答3: Flink 是现代流式处理引擎,广泛用于实时计算场景。它通过高速数据流的处理能力,使得实时计算成为了可能。在 Flink 中,词频统计是一个非常重要的实时计算应用场景,其主要用途是统计某个文本中每个单词出现的频次,从而揭示文本的特点和蕴含的信息。 词频统计初体验中,我们需要先确定数据的输入源,这可以是数据流(Stream)或数据集(DataSet)。对于流式输入源,我们需要使用 Flink 的 DataStream API,而对于有界的离线输入源,我们需要使用 Flink 的 Batch API。 在进一步设计统计模型之前,我们需要对数据进行预处理,以清理噪声和冗余信息,并将其转换为可用于分析的形式。Flink 提供了许多数据预处理操作,我们可以将其组合使用,例如 map()、filter()、flatmap() 和 reduce() 等等。这些操作可以将数据流转换为指定格式的数据集,以方便数据分析。对于文本数据,我们通常需要将其转换为单词流,以便进行词频统计。 在 Flink 中,我们可以使用 Window 操作将数据流分成可管理的时间窗口,以便对其进行分析。常见的窗口类型有滚动窗口、滑动窗口、会话窗口等等。在词频统计场景中,我们可以使用 Tumbling Window 将数据流划分为固定大小的窗口,然后对每个窗口中的所有单词进行计数。 在得到了每个窗口内所有单词的计数值后,我们可以再进一步使用 reduce() 操作进行累计计算,得到每个单词的总出现次数。这些数据可以存储到外部系统中,如数据库或文件系统中,以方便后续分析或展示。 总之,通过实践词频统计场景,我们可以深入理解 Flink 流式处理引擎的设计理念和使用方法。同时,我们也能够更好地掌握实时数据流处理的实践中常见的数据处理和分析方法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值