自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

原创 自己实现一个吴恩达《机器学习》中的神经网络算法

自己实现了一个简单的三层神经网络算法,并进行了封装。

2020-02-14 19:04:09

阅读数 15

评论数 0

原创 吴恩达《机器学习》神经网络笔记

- 神经网络的优点 - 神经网络模型 - 对模型的理解 - 模型用于多分类

2020-02-02 11:05:31

阅读数 8

评论数 0

原创 MNIST数据集fetch_mldata无法使用

之前也有人写过了吧,但管他的,我记了方便自己查阅 首先就是先把这个数据集下载下来,然后 from sklearn.datasets import fetch_mldata mnist = fetch_mldata("MNIST original", data_home=�...

2020-01-18 22:36:31

阅读数 34

评论数 0

原创 python小知识——None不是False

感觉被自己的flag坑了,每天写博客,这并不是每天都有东西写呀。。算了,就写点小知识点吧 python中当我们写if语句,并不会区分 "if not a: " 和 “if a == None:” 这两个语句,但事实上,这是不同的,虽然实际效果上常常是相同的。“not a” 表...

2020-01-17 21:25:39

阅读数 5

评论数 0

原创 吴恩达《机器学习》正则化笔记

这章感觉没啥内容呀,是我自己理解没到位吗??就讲了几个概念,过拟合、欠拟合和相应的处理办法。 首先是讲了给一个数据集,我们通过模型就可以去拟合。这就会出现三种情况:欠拟合(under fit)、拟合(just fit)、过拟合(over fit)。顾名思义,欠拟合,就是拟合的不够,具体是指有太高...

2020-01-16 22:11:36

阅读数 4

评论数 0

原创 吴恩达《机器学习》逻辑回归笔记

- 线性回归为什么没办法做分类问题 - 逻辑回归的模型(Logistic Regression) - 决策边界(Decision Boundary) - 代价函数(Cost Function) - 其他的小知识点

2020-01-15 19:23:08

阅读数 15

评论数 0

原创 闲暇随笔记

多情应笑我,早生华发。

2020-01-14 22:03:45

阅读数 5

评论数 0

原创 吴恩达《机器学习》多变量线性回归笔记

今天公式不是很多,还是用电子的吧,就不拍照了,最后在附上python代码。内容要点有: - 基本模型(Hypothesis) - 特征缩放(Feature Scaling) - α参数的评价和选择(Estimating) - 正规方程(Normal Equation) - Python代码

2020-01-13 23:10:54

阅读数 7

评论数 0

原创 机器学习简单线性回归中的线性代数

学习了单变量的线性回归,进行了代码的实现和改进,模仿sklearn的封装进行了for循环语句和向量化的语句测试和比较,发现向量化的确能大幅度的改进该算法的效率。

2020-01-12 21:16:46

阅读数 11

评论数 0

原创 吴恩达《机器学习》矩阵运算笔记

写数学公式太麻烦了,还是手写拍照比较方便,毕竟只是自己的学习笔记,看得懂就好,没必要花太多时间。 第三章 线性代数回顾 矩阵的加法 矩阵的乘法 矩阵的逆 矩阵的转置 ...

2020-01-11 12:18:32

阅读数 40

评论数 0

原创 吴恩达《机器学习》线性回归模型笔记

吴恩达《机器学习》线性回归模型 线性回归模型其实就是一个一元一次方程,有两个参数,该算法要做的事情就是找到拟合数据集最好的参数。

2020-01-10 20:05:02

阅读数 24

评论数 0

原创 吴恩达《机器学习》绪论笔记

万事开头难,从来没写过博客,没必要要求太高,反而容易放弃。就慢慢来吧,一点点的学习和进步,希望自己坚持下去,通过博客记录自己的学习历程。

2020-01-09 20:26:07

阅读数 22

评论数 0

提示
确定要删除当前文章?
取消 删除