系统程序文件列表
项目功能:用户,店员,看护师,宠物商品,咖啡信息,咖啡购买,宠物寄养,店内宠物健康,店内宠物护理,宠物信息,寄养宠物健康,寄养宠物护理
开题报告内容
SpringBoot计算机毕业设计——宠物咖啡馆系统的设计与实现开题报告
一、研究背景与意义
1.1 研究背景
随着“它经济”(宠物经济)与“第三空间”(社交消费场景)的融合发展,宠物咖啡馆作为新兴业态迅速崛起。根据《2024中国宠物行业白皮书》,国内宠物友好型消费场所年增长率达35%,但传统门店管理面临以下痛点:
- 运营低效:人工记录订单易出错,高峰期排队时间长,会员权益核销依赖纸质凭证。
- 服务割裂:宠物寄养、商品零售、活动预约等业务分散于不同系统,数据无法互通。
- 体验缺失:用户难以实时查看宠物状态(如寄养监控)、获取个性化推荐(如宠物食品过敏史匹配)。
- 营销滞后:缺乏用户行为分析,促销活动触达率低,复购率不足行业平均水平(28%)。
1.2 研究意义
本系统通过数字化手段重构宠物咖啡馆运营模式,实现三大价值:
- 效率提升:集成点单、库存、会员、寄养等模块,预计降低人工成本40%,订单处理效率提升60%。
- 体验升级:提供宠物健康档案、实时监控、AI智能推荐(如根据宠物年龄推荐玩具)等功能,增强用户粘性。
- 决策赋能:通过用户画像、消费预测、库存预警等数据驱动工具,助力精准营销与供应链优化。
二、研究目标与内容
2.1 研究目标
开发基于SpringBoot的全场景宠物咖啡馆管理系统,覆盖“到店消费+线上服务+宠物托管”全链路,具体目标包括:
- 全业务数字化:实现点餐、商品销售、宠物寄养、活动预约、会员管理的统一管理。
- 宠物健康追踪:建立宠物电子档案,支持疫苗接种提醒、健康指标(体重、食量)记录与异常预警。
- 智能推荐引擎:基于协同过滤算法推荐商品/服务,根据用户消费习惯生成定制化套餐。
- 多端协同体验:支持小程序(用户端)、管理后台(员工端)、移动端(骑手端)三端互通。
2.2 研究内容
系统功能模块设计如下:
2.2.1 用户端(小程序)
- 核心功能:
- 智能点餐:支持扫码点餐、语音下单、过敏源过滤(如勾选“宠物对鸡肉过敏”自动屏蔽相关菜品)。
- 宠物托管:在线预约寄养,上传宠物照片、疫苗证明,实时查看监控视频(基于RTMP流媒体)。
- 健康档案:记录宠物疫苗接种、驱虫时间,自动生成健康报告(PDF导出)。
- 社区互动:发布宠物动态、参与话题讨论、领取优惠券(基于LBS定位发放周边门店优惠)。
- 创新点:
- AR试宠玩具:通过小程序AR功能模拟宠物与玩具互动效果,辅助用户决策。
- 宠物匹配社交:基于宠物品种、性格推荐“遛友”,支持发起线下聚会活动。
2.2.2 员工端(管理后台)
- 核心功能:
- 订单管理:实时监控点餐、寄养、商品订单状态,支持异常订单标记(如用户未取餐)。
- 库存预警:设置商品/宠物用品安全库存阈值,低库存时自动推送补货通知至供应商。
- 员工排班:通过甘特图可视化排班,支持员工自助调班申请与审批。
- 数据看板:展示客流量热力图、商品销量TOP10、会员复购率等核心指标,支持数据钻取分析。
- 创新点:
- AI监控分析:通过YOLOv8算法识别宠物异常行为(如长时间未进食、持续吠叫),触发预警通知。
- 智能排餐优化:基于历史订单数据预测高峰期菜品需求,动态调整备餐量。
2.2.3 骑手端(移动应用)
- 核心功能:
- 订单抢单:骑手接收外卖配送任务,支持实时导航与订单合并(如同一用户多笔订单)。
- 电子围栏:设置配送范围,超区订单自动转交其他骑手,避免无效配送。
- 签收验证:通过人脸识别核验用户身份,防止代领宠物或商品。
三、技术方案与实施路径
3.1 技术选型
层级 | 技术栈 |
---|---|
后端框架 | SpringBoot 3.2 + Spring Security 6(JWT认证) + MyBatis-Plus(ORM) |
前端框架 | 小程序(原生开发)+ 管理后台(Vue 3.4 + Element Plus) |
数据库 | MySQL 8.0(主库) + Redis 7.2(缓存/会话) + MongoDB 6.0(宠物健康日志) |
实时通信 | WebSocket(订单状态推送) + RabbitMQ 3.12(异步任务处理) |
AI能力 | YOLOv8(宠物行为识别) + LightGBM(销量预测) + 微信小程序AR引擎 |
部署环境 | Linux(Ubuntu 22.04) + Nginx 1.26 + Docker + Jenkins(CI/CD) |
3.2 关键技术实现
- 智能点餐系统:
- 过敏源过滤:基于Redis Set实现标签匹配(如用户勾选“牛肉过敏”,自动过滤含牛肉商品)。
- 语音下单:集成科大讯飞语音识别SDK,支持方言识别与语义纠错。
- 宠物健康管理:
- 电子档案:采用MongoDB存储非结构化数据(如宠物照片、体检报告),支持全文检索。
- 异常预警:通过Prometheus监控宠物健康指标(如连续3天体重下降>5%),触发告警。
- 智能推荐引擎:
- 用户画像构建:基于RFM模型(最近一次消费、消费频率、消费金额)划分用户等级(如铂金会员)。
- 协同过滤算法:计算用户-商品相似度矩阵,推荐“购买过狗粮的用户还买了磨牙棒”。
- 实时监控系统:
- 视频流处理:基于FFmpeg转码RTMP流,通过HLS协议实现低延迟播放(延迟<2s)。
- AI行为分析:部署YOLOv8模型识别宠物行为(如进食、睡眠、异常活动),标注时间戳。
3.3 开发流程
- 需求分析阶段:
- 调研15家宠物咖啡馆运营痛点,输出用户旅程地图与功能优先级矩阵。
- 设计高保真原型(Axure RP),开展50人次可用性测试(SUS量表评分≥85)。
- 系统设计阶段:
- 采用微服务架构划分模块(订单服务、会员服务、宠物服务),通过Spring Cloud Gateway实现API网关。
- 设计分库分表策略(按门店ID哈希分片),支撑千店级连锁管理。
- 编码实现阶段:
- 遵循SOLID原则编写代码,单测覆盖率≥75%(Jacoco统计)。
- 通过SonarQube静态扫描,消除Critical级代码缺陷。
- 测试优化阶段:
- 实施压力测试(JMeter模拟500并发用户),确保TPS≥120,响应时间P99≤1s。
- 开展安全渗透测试(使用Nessus),修复SQL注入、越权访问等高危漏洞。
- 部署运维阶段:
- 基于Kubernetes实现容器化部署,配置HPA(水平自动扩展)应对高峰流量。
- 搭建ELK日志体系,实现全链路追踪(调用链ID贯穿订单全生命周期)。
四、预期成果与创新点
4.1 预期成果
- 系统交付物:
- 完整可运行的SpringBoot项目源码(含前后端代码、数据库脚本、部署文档)。
- API接口文档(Swagger UI在线版)与压力测试报告。
- 技术文档:
- 2万字以上毕业论文,涵盖系统架构设计、关键算法实现、性能优化方案。
- 系统操作手册(含员工端/用户端详细教程)与运维指南。
- 用户手册:
- 视频教程集(含点餐、寄养、社区互动等场景演示)。
- 常见问题FAQ(Q&A格式,覆盖90%以上用户咨询场景)。
4.2 创新点
- 全链路宠物健康管理:
- 打通宠物医院系统接口,实现疫苗接种记录自动同步。
- 开发“宠物健康指数”模型,综合体重、食量、活动量生成健康评分(1-100分)。
- AI驱动的精准营销:
- 基于LightGBM预测用户流失概率,自动触发优惠券发放(如流失风险>70%时推送50元代金券)。
- 实现“宠物生日营销”:提前3天推送定制化生日套餐(含蛋糕、玩具、拍照服务)。
- 社交化消费场景:
- 开发“宠物相亲角”功能:基于宠物品种、年龄推荐配对,支持发起线下见面活动。
- 集成区块链技术:为宠物生成唯一数字身份(NFT),记录成长轨迹并支持交易。
进度安排:
2024-10-01 ~ 2024-11-30 选题、调研、收集资料
2024-12-01 ~ 2024-12-20 论证、开题
2025-02-20 ~ 2025-04-30 写作初稿
2025-05-01 ~ 2025-05-20 修改、定稿、打印
参考文献:
[1] 吴锋珍.基于主从同步的MySQL负载均衡设计与部署[J].湖南邮电职业技术学院学报,2022,21(02):40-43.
[2] 徐东东,李广.相控阵天气雷达系统数据库设计与实现[J].信息化研究,2022,48(02):38-43.
[3] 刘湘龙,曾丽.电影院系统数据库设计与实现[J].电脑知识与技术,2022,18(06):16-18.DOI:10.14004/j.cnki.ckt.2022.0332.
[4] 李斌,邓思思,蔡思婷,陈琳敏,崔春兰,罗群.大数据时代煤田勘探钻孔地质空间数据库设计与实现[J].自然资源信息化,2022(01):19-24.
[5] 宁雪梅.仓库管理系统数据库设计与实现[J].大众标准化,2021(16):139-141.
[6] Cheng Yuan,Chen Chunhua,Zhu Jingxian,Wang Jian-Ye. Nuclear emergency rescue drill database design and implementation[J]. Annals of Nuclear Energy,2022,166.
[7] Zhou Yuanyuan,Tang Zili,Zhang Bo,Zhou Tiejun,Wen Yinghui,Wu Haiying. Design and Implementation of Image Sample Management Database[J]. SEVENTH SYMPOSIUM ON NOVEL PHOTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATIONS,2021,11763.
[8]杨梵.软件测试技术的关键能力培养探讨[J].福建电脑,2022,38(09):71-74.DOI:10.16707/j.cnki.fjpc.2022.09.016.
[9] 刘小群,邢艳芳,刘梅.《软件测试基础》课程思政与翻转课堂的教学探索[J].产业与科技论坛,2022,21(17):120-122.
[10] 罗浩榕,朱卫星,史涯晴,万进勇.构建软件测试领域不确定性知识图谱[J].计算机技术与发展,2022,32(07):111-116.
[11] 高强,魏震.县域智慧旅游管理系统开发案例研究[J].广播电视网络,2022,29(09):110-113.DOI:10.16045/j.cnki.catvtec.2022.09.002.
以上是开题是根据本选题撰写,是项目程序开发之前开题报告内容,后期程序可能存在大改动。最终成品以下面运行环境+技术栈+界面为准,可以酌情参考使用开题的内容。要源码请在文末进行获取!!
系统技术栈:
前端技术栈
Vue.js 是一个流行的JavaScript框架,广泛应用于构建用户界面。结合Spring Boot,可以实现前后端分离的架构。
Element UI是一个基于Vue.js 的UI组件库,提供了丰富的UI元素和组件,可以帮助开发者快速搭建美观的前端界面
这些是最基本的前端技术,是所有前端开发的基础。掌握这些技术对于理解更高级的前端框架和工具非常重要
后端技术栈
核心容器:Spring Boot 提供了一个全面的核心容器,用于管理应用程序中的对象和依赖关系
Web:Spring Boot 内置了多个 Web 框架(如 Tomcat、Jetty 或 Undertow),使得创建 Web 应用变得非常简单
数据访问:Spring Boot 支持多种数据库连接池和ORM框架(如 MyBatis、JPA),简化了数据访问层的开发
开发工具
IntelliJ IDEA:这是一款功能强大的 Java IDE,特别适合开发 Spring Boot 项目。它提供了丰富的插件和功能来增强开发体验
Visual Studio Code:这是一个轻量级但功能强大的跨平台 IDE,提供对 Java 和 Spring Boot 开发的良好支持
开发流程:
使用Maven创建一个SpringBoot项目。这可以通过IDE(如IntelliJ IDEA或Eclipse)来完成,选择相应的模板即可
在项目的pom.xml 文件中添加SpringBoot相关的依赖,例如spring-boot-starter-web等
设置项目的启动类,通常命名为Application.java 或类似的名称,并使用@SpringBootApplication注解来标注
配置核心的SpringBoot配置文件,如application.properties 或application.yml ,用于定义数据库连接、缓存策略等
使用者指南
使用 Maven 或 Gradle 创建一个新的工程,并引入 Spring Boot 相关的依赖
在src/main/java 目录下创建一个主类,并使用 @SpringBootApplication 注解标注该类。这个注解会启用 Spring Boot 的自动配置功能
主类中通常包含一个 main 方法,用于启动 Spring Boot 应用
- Spring Boot 提供了丰富的自动配置机制,可以根据项目中的配置文件或外部属性自动配置应用程序。
- 自动配置原理是通过扫描特定的目录和类路径,寻找符合条件的组件并进行配置
运行应用:
- 通过命令行进入 src/main/java 目录,运行主程序类中的 main 方法即可启动应用。
- 默认情况下,Spring Boot 应用会使用嵌入式的 Tomcat、Jetty 或 Netty 容器运行
程序界面: