deep learning
文章平均质量分 82
chenyuanxu
人品之不高,因利字看不破;学业之不进,为懒字丢不开
展开
-
Hung-Yi Lee homework[14]:Life Long Learning
Hung-Yi Lee homework[14]:Life Long Learning一、Life Long Learning原理二、作业描述 一、Life Long Learning原理 Life Long Learning的意思是:机器首先学习了任务一,然后学习了任务二,此时机器同时掌握了任务一和任务二,如果机器在之后的时间中继续学习别的任务,机器就能够拥有更多的技能,理想状态下,机器可以无所不能。 要想实现Life Long Learning,需要解决以下几个问题:(1)如何在学习新知识时对原创 2021-08-30 23:13:53 · 290 阅读 · 0 评论 -
Hung-Yi Lee homework[12]: Transfer Learning (Domain Adversarial Training)
@[TOC](Hung-Yi Lee homework[12]: Transfer Learning (Domain Adversarial Training)) 一、Transfer Learning原理介绍 Transfer Learning:迁移学习。把为任务A开发的模型作为初始点,重新使用在为任务B开发模型的过程中。 迁移学习和传统机器学习的区别: 迁移学习 传统机器学习 数据分布 训练和测试数据不需要同分布 训练和测试数据同分布 数据标签 不需要足够的数据标注 足够的数原创 2021-08-24 15:47:48 · 331 阅读 · 0 评论 -
Hung-Yi Lee homework[10]: Anomaly Detection
Hung-Yi Lee homework[12]: Transfer Learning原创 2021-08-23 23:19:20 · 335 阅读 · 0 评论 -
Hung-Yi Lee homework[11]: GAN
Hung-Yi Lee homework[11]: GAN原创 2021-08-17 15:23:59 · 279 阅读 · 0 评论 -
Hung-Yi Lee homework[9]: Unsupervised Learning
Hung-Yi Lee homework[9]: Unsupervised Learning原创 2021-08-10 15:42:24 · 279 阅读 · 0 评论 -
Hung-Yi Lee homework[8]: Sequece to Sequence
Hung-Yi Lee homework[8]: Sequece to Sequence原创 2021-08-03 12:15:15 · 760 阅读 · 1 评论 -
Hung-Yi Lee homework[7]: Network Compression
Hung-Yi Lee homework[7]: Network Compression一、知识蒸馏1.1 知识蒸馏的理论依据 李宏毅老师上课介绍了四种network compression的方式(知识蒸馏,网路剪枝,网络重构,参数量化)在此进行一个整理。 一、知识蒸馏 主要思想:通过使用一个较大的已经训练好的网络去训练一个较小的网络,使得小网络可以尝试复制出大网络的输出。 1.1 知识蒸馏的理论依据 知识蒸馏使用Teacher-Student模型。知识蒸馏的过程分为2个阶段: 原始模型训练原创 2021-07-19 23:22:42 · 274 阅读 · 2 评论 -
Hung-Yi Lee homework[6]:Adversarial Attack
Hung-Yi Lee homework[6]:Adversarial Attack(一)作业描述(二)作业实现 (一)作业描述 使用FGSM得到攻击图像。 算法地址 (二)作业实现 import os import pandas as pd from PIL import Image import numpy as np import torch import torch.nn.functional as F import torchvision.datasets as datasets fro原创 2021-06-22 14:56:10 · 228 阅读 · 0 评论 -
Hung-Yi Lee homework[5]:Explaninable ML
Hung-Yi Lee homework[5]:Explaninable ML(一) 作业描述(二) 实现过程1. Sailency Map (一) 作业描述 本次作业分为3个任务: (二) 实现过程 1. Sailency Map import os import sys import argparse import numpy as np from PIL import Image import matplotlib.pyplot as plt import torch import torch原创 2021-06-15 17:38:51 · 287 阅读 · 1 评论 -
Hung-Yi Lee homework[4]:RNN
Hung-Yi Lee homework[4]:RNN作业描述实现过程utils.pyword2vec.pydata_preprocess.pydataset.pymodel.pytrain.pytrain_main.pytest.pypredict.py 作业描述 输入英文句子,输出0或1(如果句子是正面的,标1;如果句子是负面的,标0)。要求采用RNN。 下载的数据中包含三个文件:training_label.txt,training_nolabel.txt,testing_data.txt。原创 2021-06-01 17:11:03 · 409 阅读 · 1 评论 -
Hung-Yi Lee homework[3]:CNN
Hung-Yi Lee homework[3]:CNN原创 2021-05-17 21:42:57 · 709 阅读 · 5 评论 -
Hung-Yi Lee homework[2]:classification
Hung-Yi Lee homework[2]:classification一、作业要求二、开始实验2.1 Logistic regression2.1.1 加载数据:[addition]open()和with open() as的区别[addition]python3 File next()方法2.1.2 归一化[addition]python定义函数 返回值只取其中一个[addition]np.arange()[addition]np.mean()2.1.3 分割训练集-验证集2.1.4 开始训练[ad原创 2020-11-15 16:15:21 · 299 阅读 · 0 评论 -
Hung-Yi Lee homework[1]:regression
Hung-Yi Lee:regression1. 导入所需要的库2. 导入train数据pandas.DataFrame.ilocpandas.DataFrame.to_numpyNumpy数组ndarray的内部机理3. data数据的预处理reshape(1,-1)4. normalization5. 从训练集中取出一部分设立验证集6. 开始训练adagrad(Adaptive gradient alorithm)7. 对测试集进行预处理8. 验证模型并预测 鸣谢:李宏毅2020机器学习作业1——原创 2020-11-08 17:16:32 · 660 阅读 · 0 评论