图机器学习——1.3 传统方法:基于图

基于图

我们的目的是将整张图量化为一个特征,这里传统的做法是利用 Graph Kernel 来衡量两个图的相似度。

图中的Kernel我们进行如下的定义:

Kernel K ( G , G ′ ) ∈ R K\left(G, G^{\prime}\right) \in \mathbb{R} K(G,G)R 衡量数据之间的相似性。存在一个特征表示 ϕ ( ⋅ ) \phi(\cdot) ϕ() such ,使得 K ( G , G ′ ) = ϕ ( G ) T ϕ ( G ′ ) K\left(G, G^{\prime}\right)=\phi(G)^{\mathrm{T}} \phi\left(G^{\prime}\right) K(G,G)=ϕ(G)Tϕ(G)

Kernel 方法在图结构中的研究主要有两类:一是 Graph embedding 算法,将图(Graph)结构嵌入到向量空间;另一类就是 Graph kernel 算法。

第一类得到图结构的向量化表示,然后直接应用基于向量的核函数(RBF kernel, Sigmoid kernel, etc.) 处理,但是这类方法将结构化数据降维到向量空间损失了大量结构化信息。而 Graph kernel 直接面向图结构数据,既保留了核函数计算高效的优点,又包含了图数据在希尔伯特高维空间的结构化信息。

其中包括:

  • Graphlet Kernel
  • Weisfeiler Lehman Kernel
  • Random walk kernel
  • Shortest path graph kernel

我们将着重学习前两个Kernel。

a. Graphlet Kernel

在前面基于节点的方法中,其实已经介绍过Graphlet系列方法,总体思想还是一样的,我们需要构造一个类似“词袋”模型的向量,但与节点层面的Graphlet不同,图层面的Graphlet考虑了单独的节点情况,同时不涉及root节点。

三个节点与四个节点构成所有可能的Graphlets如下:

给定一个图 G G G与一个graphlet list G k = \mathcal{G}_{k}= Gk= ( g 1 , g 2 , … , g n k ) \left(g_{1,} g_{2}, \ldots, g_{n_{k}}\right) (g1,g

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值