图机器学习——5.9 图神经网络:图的增广

由于在实际的训练中,原始的图结构往往不是训练的最优图结构。下面我们考虑如何对图进行增强(graph augmentation),这个类似于数据扩增,提升训练效率,模型的泛化能力及测试集的准确率。

这种图增强的方法分为两种类型:

  • 图特征增强;
  • 图结构增强。

需要图增强的原因有如下几点:

  • 输入图的节点可能比较缺乏特征;
  • 图结构可能过于稀疏,从而没有足够的信息传递;
  • 图结构可能过于稠密,进而导致信息传递出现冗余;
  • 图可能过大,使得一整个图结构没办法直接放入GPU中进行训练。

针对上面几点,分别针对性地给出相应的方法。


① 缺乏特征

总体而言,针对这种情况,直接使用特征增强(feature augmentation)。但具体而言,需要使用特征增强的情况又分为两类:a. 完全没有节点特征信息b. 一些图的结构难以直接被GNN学习

a. 针对完全没有节点特征信息的情形(只有一个邻接矩阵的信息),可以用一个常数值作为每个节点的特征;或者使用每个节点的一个独立编码作为节点对应的特征,而后再转为 One-hot 编码。两种方法的示意图如下:

两种方法的优缺点分别如下:

b. 有些结构难以被GNN学习,例如下图所示的循环结构:

在GNN的消息传递机制中,这种循环结构会变成这种无穷长度的图形式,

这样就会使得GNN的训练失效。在实际的训练中,高效的训练图形式是下述这种二分树的形式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值