微分几何 曲线合同

什么曲线是合同的?

合同的意思是能通过此几何的刚体运动把几何对象彼此变换。也就是说,如果两个曲线是合同的,那么一定存在一个等距变换,能把其中一条曲线变成另一曲线。

怎么证明合同?

由上述对合同的理解可以发现,合同的曲线的形状相同。那么只需要证明两个曲线的曲率和挠率相同即可。

怎么求合同曲线相差的变换?

我们用题目来说明。


已知两条曲线 C : r = r ( t ) C:r=r(t) C:r=r(t) C ∗ : r ∗ = r ∗ ( u ) C^*:r^*=r^*(u) C:r=r(u)的参数方程分别为
r ( t ) = ( t + 3 sin ⁡ t , 2 cos ⁡ t , 3 t − sin ⁡ t ) r ∗ ( u ) = ( 2 cos ⁡ u , 2 sin ⁡ u , − 2 u ) r(t)=(t+\sqrt{3}\sin{t}, 2\cos{t}, \sqrt{3}t-\sin{t}) \\ r^*(u)=(2\cos{u}, 2\sin{u},-2u) r(t)=(t+3 sint,2cost,3 tsint)r(u)=(2cosu,2sinu,2u)
试证 C C C C ∗ C^* C是合同的,并确定两条曲线相差的刚体运动。


解:易证 κ = κ ∗ = 1 4 , τ = τ ∗ = − 1 4 \kappa=\kappa^*=\frac{1}{4}, \tau=\tau^*=-\frac{1}{4} κ=κ=41,τ=τ=41,所以 C C C C ∗ C^* C合同。
下面求相差的变化
【方法一】 目测法
能直接观察出来是最好的。这道题可以比较容易的看出,当 t = u t=u t=u时,有
( t + 3 sin ⁡ t , 2 cos ⁡ t , 3 t − sin ⁡ t ) = ( 2 cos ⁡ t , 2 sin ⁡ t , − 2 t ) ( 0 1 0 3 2 0 − 1 2 − 1 2 0 − 3 2 ) (t+\sqrt{3}\sin{t}, 2\cos{t}, \sqrt{3}t-\sin{t}) \\ =(2\cos{t}, 2\sin{t},-2t) \begin{pmatrix} 0 & 1 & 0 \\ \frac{\sqrt{3}}{2} & 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 & -\frac{\sqrt{3}}{2} \end{pmatrix} (t+3 sint,2cost,3 tsint)=(2cost,2sint,2t)023 2110002123
这个矩阵显然时正交矩阵。
【方法二】 计算 r ( 0 ) r(0) r(0) r ∗ ( 0 ) r^*(0) r(0)处的Frenet标架,这两个标架关系就决定了所求的正交变换。
经计算,r(0)处的Frenet标架为
{ α ( 0 ) = ( 6 + 2 4 , 0 , 6 − 2 4 ) β ( 0 ) = ( 0 , − 1 , 0 ) γ ( 0 ) = ( 6 − 2 4 , 0 , − 6 + 2 4 ) \begin{cases} \alpha(0)&=\left(\frac{\sqrt{6}+\sqrt{2}}{4},0,\frac{\sqrt{6}-\sqrt{2}}{4} \right) \\ \beta(0)&= (0,-1,0) \\ \gamma(0)&=\left(\frac{\sqrt{6}-\sqrt{2}}{4},0,-\frac{\sqrt{6}+\sqrt{2}}{4} \right) \end{cases} α(0)β(0)γ(0)=(46 +2 ,0,46 2 )=(0,1,0)=(46 2 ,0,46 +2 )
r ∗ ( 0 ) r^*(0) r(0)的Frenet标架为
{ α ∗ ( 0 ) = ( 0 , 2 2 , − 2 2 ) β ∗ ( 0 ) = ( − 1 , 0 , 0 ) γ ∗ ( 0 ) = ( 0 , 2 2 , 2 2 ) \begin{cases} \alpha^*(0)&=\left(0,\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2} \right)\\ \beta^*(0)&=\left(-1,0,0 \right)\\ \gamma^*(0)&=\left(0,\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2} \right)\\ \end{cases} α(0)β(0)γ(0)=(0,22 ,22 )=(1,0,0)=(0,22 ,22 )
( α ( 0 ) β ( 0 ) γ ( 0 ) ) = ( α ∗ ( 0 ) β ∗ ( 0 ) γ ∗ ( 0 ) ) A \begin{pmatrix} \alpha(0) \\ \beta(0) \\ \gamma(0) \end{pmatrix}= \begin{pmatrix} \alpha^*(0) \\ \beta^*(0) \\ \gamma^*(0) \end{pmatrix}A α(0)β(0)γ(0)=α(0)β(0)γ(0)A,解得
A = ( 0 1 0 3 2 0 − 1 2 − 1 2 0 − 3 2 ) A=\begin{pmatrix} 0 & 1 & 0 \\ \frac{\sqrt{3}}{2} & 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 & -\frac{\sqrt{3}}{2} \end{pmatrix} A=023 2110002123
【方法三】 从参数为0的点出发选三组对应的点
本题可以选 { r ( π 4 ) − r ( 0 ) , r ( π 2 ) − r ( 0 ) , r ( π ) − r ( 0 ) } \{r(\frac{\pi}{4})-r(0),r(\frac{\pi}{2})-r(0), r(\pi)-r(0)\} {r(4π)r(0),r(2π)r(0),r(π)r(0)} { r ∗ ( π 4 ) − r ∗ ( 0 ) , r ∗ ( π 2 ) − r ∗ ( 0 ) , r ∗ ( π ) − r ∗ ( 0 ) } \{r^*(\frac{\pi}{4})-r^*(0),r^*(\frac{\pi}{2})-r^*(0), r^*(\pi)-r^*(0)\} {r(4π)r(0),r(2π)r(0),r(π)r(0)}两个标架,确定其关系亦可确定所要求的变换。




我们来看下一道题


已知两条曲线 C 1 : r = ( ch ⁡ t , sh ⁡ t , t ) C_1:r=(\ch{t},\sh{t},t) C1:r=(cht,sht,t) C 2 : r = ( e − u 2 , e u 2 , u + 1 ) C_2:r=\left(\frac{e^{-u}}{\sqrt{2}},\frac{e^{u}}{\sqrt{2}},u+1 \right) C2:r=(2 eu,2 eu,u+1)
试证 C 1 C_1 C1 C 2 C_2 C2是合同的,并确定两条曲线相差的刚体运动。


解:易得 κ 1 = 1 2 ch ⁡ 2 t , κ 2 = 1 2 ch ⁡ 2 u , τ 1 = 1 2 ch ⁡ 2 t , τ 2 = 1 2 ch ⁡ 2 u \kappa_1=\frac{1}{2\ch^2{t}}, \kappa_2=\frac{1}{2\ch^2{u}}, \tau_1=\frac{1}{2\ch^2{t}},\tau_2=\frac{1}{2\ch^2{u}} κ1=2ch2t1,κ2=2ch2u1,τ1=2ch2t1,τ2=2ch2u1
t = u t=u t=u时, κ 1 = κ 2 , τ 1 = τ 2 \kappa_1=\kappa_2, \tau_1=\tau_2 κ1=κ2,τ1=τ2
下面求刚体运动
【方法一】 可以直接看出
( ch ⁡ t , sh ⁡ t , t ) = ( e − t 2 , e t 2 , t + 1 ) ( 1 2 − 1 2 0 1 2 1 2 0 0 0 1 ) + ( 0 , 0 , − 1 ) (\ch{t},\sh{t},t)=\left(\frac{e^{-t}}{\sqrt{2}},\frac{e^{t}}{\sqrt{2}},t+1 \right)\begin{pmatrix}\frac{1}{\sqrt{2}}&-\frac{1}{\sqrt{2}}&0\\\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}&0\\0&0&1\end{pmatrix}+(0,0,-1) (cht,sht,t)=(2 et,2 et,t+1)2 12 102 12 10001+(0,0,1)
【方法二】
C 1 C_1 C1在0处的Frenet标架为
{ α 1 ( 0 ) = ( 0 , 1 2 , 1 2 ) β 1 ( 0 ) = ( 1 , 0 , 0 ) γ 1 ( 0 ) = ( 0 , 1 2 , − 1 2 ) \begin{cases} \alpha_1(0)&=\left(0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}} \right) \\ \beta_1(0)&= (1,0,0) \\ \gamma_1(0)&=\left(0,\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}} \right) \end{cases} α1(0)β1(0)γ1(0)=(0,2 1,2 1)=(1,0,0)=(0,2 1,2 1)
C 2 C_2 C2在0处的Frenet标架为
{ α 2 ( 0 ) = ( − 1 2 , 1 2 , 1 2 ) β 2 ( 0 ) = ( 1 2 , 1 2 , 0 ) γ 2 ( 0 ) = ( − 1 2 , 1 2 , − 1 2 ) \begin{cases} \alpha_2(0)&=\left(-\frac{1}{2},\frac{1}{2},\frac{1}{\sqrt{2}} \right) \\ \beta_2(0)&= (\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0) \\ \gamma_2(0)&=\left(-\frac{1}{2},\frac{1}{2},-\frac{1}{\sqrt{2}} \right) \end{cases} α2(0)β2(0)γ2(0)=(21,21,2 1)=(2 1,2 1,0)=(21,21,2 1)
( α 1 ( 0 ) β 1 ( 0 ) γ 1 ( 0 ) ) = ( α 2 ( 0 ) β 2 ( 0 ) γ 2 ( 0 ) ) A \begin{pmatrix}\alpha_1(0) \\ \beta_1(0) \\ \gamma_1(0)\end{pmatrix}=\begin{pmatrix}\alpha_2(0) \\ \beta_2(0) \\ \gamma_2(0)\end{pmatrix}A α1(0)β1(0)γ1(0)=α2(0)β2(0)γ2(0)A,解得
A = ( 1 2 − 1 2 0 1 2 1 2 0 0 0 1 ) A= \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix} A=2 12 102 12 10001
代入验证可得 r 1 ( t ) = r 2 ( t ) A + ( 0 , 0 , − 1 ) r_1(t)=r_2(t)A+(0,0,-1) r1(t)=r2(t)A+(0,0,1)


通过这道题可以看出,方法二(包括方法三)的方法是无法求出平移变换的,不过可以在求出正交变换后,作一条曲线与另一条曲线做正交变换后的新曲线的差,得到平移变换。

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
曲线和曲面的微分几何是研究曲线和曲面上的切向量、法向量、曲率等几何性质的数学分支。其相关内容主要包括曲线的切向量、弧长、曲率、曲率半径等以及曲面的切向量、法向量、法曲率、主曲率等。 对于曲线来说,微分几何主要关注的是曲线上每一点的切向量。切向量的方向与曲线的切线方向相同,表示曲线运动方向,而切向量的大小代表了曲线的速率。曲线的弧长是曲线点之间的距离,微分几何研究了如何计算曲线的弧长以及如何利用弧长参数化曲线。曲率则刻画了曲线弯曲的程度,曲线上一点的曲率越大,曲线在该点的弯曲越剧烈。曲率半径是曲线在一点处的曲率的倒数,代表曲线在该点处与局部的圆弧最相似的曲率。 对于曲面来说,微分几何主要关注的是曲面上每一点的切向量和法向量。曲面上的切向量与曲线类似,代表了曲面上的运动方向。法向量垂直于切平面,表示曲面在该点的法线方向。法曲率是曲面在一点处平行于法线方向的曲率,与曲面在该点处的弯曲程度相关。主曲率则是曲面在一点处个方向上的曲率,分别与个主曲率方向对应。通过计算主曲率和主曲率方向,可以得到曲面的高斯曲率和平均曲率,刻画了曲面的几何性质。 曲线和曲面的微分几何在物理学、工程学和计算机图形学等领域有广泛的应用,例如在描述物体的形状、计算流体的流线、计算机图形学中的三维建模等方面都有重要的作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

73826669

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值