MySQL高级-索引优化分析
一.简介
1. 索引是什么
- 索引index 是帮助mysql高效获取数据的数据结构
- 本质:索引就是数据结构
- 面试回答: 排好序的快速查找数据结构
2. 优势
- 提高数据检索的效率,降低数据库的IO成本
- 降低数据排序的成本,降低了cpu的消耗
3. 劣势
- 索引也是一张表,该表保存了主键和索引字段,并指向实体表的记录,所以索引列也是要占用空间的
- 索引大大提高了查询速度,同时降低了更新表的速度
- 索引只是其中一个因素,数据量大的话
4. 分类
- 单值索引:一个索引只包含单个列,一个表可以有多个单列索引
- 唯一索引:索引列的值必须唯一,但是允许有空值
- 复合索引一个索引包含多个列
5. 结构
- BTree索引:Java主要使用索引
- Hash索引
- full-text全文索引
- R-Tree索引
5. 需要创建索引的情况
- 主键自动建立唯一索引
- 频繁作为查询条件的字段应该创建索引
- 查询中与其他表关联的字段,外键关系的应该建立索引
- 频繁更新的字段不适合创建索引
- where 条件中用不到的字段不创建索引
- 高并发下倾向创建组合索引
- 查询中排序的字段,排序字段若是通过索引去访问将大大提高排序速度
- 查询中统计或者分组的字段
6. 不要创建索引的情况
- 表的记录太少
- 经常性增删改查的表
- 数据重复且分布平均的表字段
二.性能分析
1. mysql常见瓶颈
- CPU在饱和的时候一般发生在数据装入内存或从磁盘上读取数据时候
- 磁盘I/O瓶颈发生在装入数据远大于内存容量的时候
- 服务器硬件的性能瓶颈,top,free,iostat和vmstat来查看系统的性能状态
2. Explain 分析
(1). Explain是什么
- 使用explain关键字可以模拟优化器执行SQL查询语句,从而知道mysql是如何处理SQL语句的,分查询语句或是表结构的性能瓶颈
(2). Explain能干嘛
- 表的读取顺序
- 数据读取操作的操作类型
- 哪些索引可以使用
- 哪些索引被实际使用
- 表之间引用
- 每张表有多少行被优化器查询
(3).explain 执行计划包含的信息
id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
---|
(3).explain字段解释-id
select 查询的序列号,包含一组数字,表示查询中执行select子句或操作表的顺序
三种情况:
- id相同,执行顺序由上至下
- id不同,如果是子查询,id的序号会递增,id值越大优先级越高,越先被执行
- id相同不同,同时存在
(4).explain字段解释-select_type
查询类型,主要是用于区别普通查询,联合查询,子查询等的复杂查询
类型:
- SIMPLE 简单查询,不包含子查询等复杂
- PRIMARY 包含子查询,最外层查询被标记
- SUBQUERY 在select /where 包含了子查询
- DERIVED 在from列表中包含的子查询被标记为derived (衍生) 临时表
- UNION 若是第二个select出现在union之后,则被标记为union
- UNION RESULT 从union表获取结果的select
(5).explain字段解释-table
显示这一行的数据是关于哪一张表
(6).explain字段解释-type
访问类型排列
类型:
- system
- const
- eq_ref
- ref
- range
- index
- all
(7).explain字段解释-possible_keys
显示可能应用在这张表中的索引,一个或者多个
(8).explain字段解释-key
实际使用的索引
(9).explain字段解释-key_len
标识索引中使用的字节数,可通过该列计算查询中使用的索引长度.在不失精确性的情况下,长度越短越好
(10).explain字段解释-ref
显示索引的哪一列被使用了
(11).explain字段解释-rows
根据表统计信息及索引选用的情况,大致估算出找到所需记录所需要的读取的行数
(12).explain字段解释-Extra
包含不适合其他列中显示但十分重要的额外信息
三.性能优化
日后连载…