快速幂算法

对于a^n,使用迭代算法的复杂度为O(n),而且cmath的函数库中,pow(a,b)的返回值是int型,稍不注意就会丢失精度。

而快速幂的算法的复杂度则是O(logn)的,原理也很简单,惊了,nice兄dei!

我们知道,任何一个数都可以拆成2的n次幂的和的形式,如11 = (1011)_{2} ----->11 = 2^0 + 2^1 + 2^3,那么,对于任意一个数非负数n,n^{11} = n^{2^{0}+2^{1}+2^{3}} = n^{1+2+8} = n^{1} *(n^{2}) * (n^{8}),我们可以利用一个中间变量base,不停对base进行乘方运算,从而得到n,n^2,n^4等形如n^{2^{x}}的数。

那么确定n^{2^{x}}该不该乘上呢?很简单,只要把指数表示成二进制,通过&1操作(按位与1,结果是0则最后一位是0,结果是1则最后一位是1)得到指数二进制的最后一位,如果不为0,则可乘一波n^{2^{x}},如果得0则不乘。随后,我们将中间变量base进行乘方运算,再通过>>将指数右移一位,循环即可。

代码奉上:

int qsm(int a, int b)
{
    int ans = 1,base = a;
    while(b != 0)
    {
        if(b & 1)
            ans *= base;
        base *= base;
        b >>= 1;
    }
    return ans;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值