对于a^n,使用迭代算法的复杂度为O(n),而且cmath的函数库中,pow(a,b)的返回值是int型,稍不注意就会丢失精度。
而快速幂的算法的复杂度则是O(logn)的,原理也很简单,惊了,nice兄dei!
我们知道,任何一个数都可以拆成2的n次幂的和的形式,如,那么,对于任意一个数非负数n,,我们可以利用一个中间变量base,不停对base进行乘方运算,从而得到n,n^2,n^4等形如的数。
那么确定该不该乘上呢?很简单,只要把指数表示成二进制,通过&1操作(按位与1,结果是0则最后一位是0,结果是1则最后一位是1)得到指数二进制的最后一位,如果不为0,则可乘一波,如果得0则不乘。随后,我们将中间变量base进行乘方运算,再通过>>将指数右移一位,循环即可。
代码奉上:
int qsm(int a, int b)
{
int ans = 1,base = a;
while(b != 0)
{
if(b & 1)
ans *= base;
base *= base;
b >>= 1;
}
return ans;
}