【实战】PULSE + ALAE:使用 StyleGAN 从低阶图像重建高清人脸

本文介绍了如何利用PULSE和ALAE项目,通过StyleGAN技术从低分辨率人脸图像重建高清人脸。PULSE侧重于图像上采样,而ALAE则允许对人脸属性进行调整。尽管这两个工具主要基于欧美人脸模型,但可以通过训练黄种人模型改进效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果有我们一张低阶的、非常模糊的人脸图像,希望把它恢复成高清人脸,然后辨认这个人脸是否是某个人,应该怎么做?

举个例子,某个小区发生了一起盗窃案,我们只是从监控录像中截取到一个非常模糊的人脸,能够用StyleGAN的方法像公安刑侦的“嫌疑人画像”一样,快速地重建高清人脸吗?

或者,我们找到一张20年前的一张照片,只从上面提取到一个非常小的人脸,能够有办法把它复原成一张高清大图吗?

下面介绍两个 github.com 上的开源项目,一个用于重建人脸(PULSE),一个用于调整参数(ALAE)。

(一)PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

           PULSE:通过探索生成模型的潜码空间实现自监督图像上采样

这是美国杜克大学发表的研究成果,在 github.com 上的地址是:https://github.com/adamian98/pulse

在 Windows 10 环境下安装并运行,可以遵循下面的步骤:

(1.1)把项目源代码下载下来,解压缩放到自己的工作目录下:

(1.2)编辑用于创建编译环境的依赖描述文件:pulse.yml

可以手工编辑文件,删除每个依赖项后面的特定版本的 hash 值;同时删除运行 conda env create -n pulse -f pulse.yml 时会抛出错误的依赖项,比如:

(1.2.1)将依赖项:

dependencies
  - blas=1.0=mkl

修改为:

dependencies
  - blas=1.0

(1.2.2)删除若干会报错的依赖项:

  ...
  - libcxx=10.0.0=1
  ...
  - readline=8.0=h1de35cc_0
  ...
  

大家也可以直接参考我已经编辑好的pulse.yml文件,如下所示(最后一行是根据我安装的Anaconda目录指定的,大家可以根据自己的安装目录自行修改):

  - cffi=1.14.0
  - chardet=3.0.4
  - cryptography=2.9.2
  - cycler=0.10.0
  - freetype=2.9.1
  - idna=2.9
  - intel-openmp=2019.4
  - jpeg=9b
  - kiwisolver=1.2.0
  - libpng=1.6.37
  - libtiff=4.1.0
  - matplotlib=3.1.3
  - matplotlib-base=3.1.3
  - mkl=2019.4
  - mkl-service=2.3.0
  - mkl_fft=
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值