链表的实际应用:约瑟夫问题

今天要解决的是约瑟夫问题

1 .链表的基本概念

1.1 什么是链表 ?

如下图所示 :

在这里插入图片描述
SingleLinkedList代表单向链表 , 每一个结点含有 :

  1. data域 : 用于保存数据
  2. next域 : 用于保存指向下一个结点的指针

DoubleLinkedList代表双向链表 , 每一个结点含有 :

  1. prev域 : 用于保存指向前一个结点的指针
  2. data域 : 用于保存数据
  3. next域 : 用于保存后一个数据的指针
对于头结点的说明 :

头结点表示一个单链表第一个含有有效数据结点之前的结点, 它一般不保存数据, 用作链表的前驱

使用头结点和不使用头结点的不同 :

​ 使用头结点方便在第一个位置进行插入, 删除操作时和其它位置的插入删除操作的代码保持一致性 , 因为带上头结点之后 , 头指针永远不需要移动 , 而不带上头结点时 , 在第一个位置进行插入或删除操作时, 头指针需要移动 , 较为麻烦 , 有兴趣的读者可以尝试一下 , 这里不再详述…

1.3 单向循环链表(不带头结点)

在这里插入图片描述

单向循环链表就是单向链表的升级版 , 尾结点的指针不再指向空 , 而是指向第一个结点

约瑟夫问题(也称"丢手帕问题")

约瑟夫问题起源 :

在罗马人占领乔塔帕特后,39 个犹太人与Josephus及他的朋友躲到一个洞中,39个犹太人决定宁愿死也不要被敌人抓到,于是决定了一个自杀方式,41个人排成一个圆圈,由第1个人开始报数,每报数到第3人该人就必须自杀,然后再由下一个重新报数,直到所有人都自杀身亡为止。然而Josephus 和他的朋友并不想遵从。这个过程沿着圆圈一直进行,直到最终只剩下一个人留下,这个人就可以继续活着。Josephus要他的朋友先假装遵从,他将朋友与自己安排在第16个与第31个位置,于是逃过了这场死亡游戏。

为什么约瑟夫一开始就知道站在16和31就一定能躲过自杀呢?这就是数学的魅力所在, 真香~

在这里插入图片描述

外圈表示第几个自杀, 内圈表示每个人的序号


单向循环链表解决约瑟夫问题

问题重述 :

设有n个人围成一圈 , 编号从1到n , 约定从编号为k(1 <= k <= n)的人从1开始报数 , 数到 m 的那个人被淘汰 , 接着下一个人重新从1开始报数 , 数到 m 再淘汰一人 , 如此反复 , 直至剩下最后一个人为止

思路 :

① 为什么使用单向循环链表 ?

我们可以知道约瑟夫问题是一个不断循环而且数据不断减少的过程 , 使用单向循环链表可以很方便地对数据进行删除 , 而且遍历链表方便

② 理清过程 , 首先一个带有n个结点地单循环链表 , 从第k个人开始从1报数 , 那么首先需要将头指针指向第k个人 , 辅助删除指针指向第(k-1)个人 , 定义辅助删除指针的意义是为了方便当第k个人淘汰时 , 可以很方便的将第(k-1)的next指针指向第(k+1)个人, 当人数剩下一个人时 , 则认为这场游戏已经结束了 , 最后剩下的那个人就是胜利者
在这里插入图片描述
在这里插入图片描述

代码实现(JAVA版) :

1.定义小孩的结点
//定义一个Child结点, 每一个Child对象就是一个结点
public class Child{
	//编号
	public Integer no;
	//指向下一个结点
	public Child next;
	
	public Child(Integer no) {
		super();
		this.no = no;
	}
	
	public Integer getNo() {
		return no;
	}

	public void setNo(Integer no) {
		this.no = no;
	}

	@Override
	public String toString() {
		return "Node [no=" + no + "]";
	}
}

2.定义单向循环链表
//定义SingleLinkedList来管理我们的Child结点
class CircleLinkedList{
	
	//第一个结点
	private Child first = null;
	//当前的最后一个结点
	private Child rear = null;
	
	//添加结点到单向链表
	public void add(Child child){
        //判断当前链表是否为空
		if(first == null){
			first = child;
			child.next = first;
			rear = child;
		}else{
			rear.next = child;
			child.next = first;
			rear = child;
		}
	}
	
	/**
	 * 核心代码
	 * @param m 数到几出圈
	 * @param n 共有n个孩子玩游戏
	 * @param k 从第k个孩子开始报数
	 */
	//开始游戏, 小孩出圈
	public void play(int k, int m, int n){	
		int count = 1;
		//使first指针和deleteNode指针指向第k个孩子和(k-1)个孩子
		for(int i = 1; i<=n; i++){	
			if(i==k){break;}
			first = first.next;
			rear = rear.next;
		}
		//辅助删除指针, 需要删除元素时使用, 所以初始化时应该指向最后一个结点
		//因为一开始第一个结点开始报数, 有可能报的是1, num也为1, 则首结点被淘汰
		Child deleteNode = rear;
		if(n==1){
			System.out.println("你自己一个人玩, 你逃不掉了, 人数过少,无法开始游戏");
			return ;
		}
		System.out.println("被淘汰的小孩的编号为:");
		count = 1;
		while(true){
			//只剩下一个人了
			if(n==1){
				System.out.println();
                System.out.println("存活的玩家是:"+first.getNo());
				break;
			}
			//判断是否数到m, 如果是则删除该结点
			if(count == m){
				System.out.print(deleteNode.next.getNo()+" ");
				first = first.next;
				deleteNode.next = first;
				count = 1;
                //人数减少
				n--;
				continue;
			}
            //头指针与辅助删除指针都往后移一位
			deleteNode = deleteNode.next;
			first = first.next;
			count++;
        }
	}
}
3. 代码运行
public class JosephuSolution {

	public static void main(String[] args) {
		
		CircleLinkedList circleLinkedList = new CircleLinkedList();
		int i = 1;
		int n = 41;
        //生成小孩
		while(i<=n){
			Child child = new Child(i);
			circleLinkedList.add(child);
			i++;
		}
        // k=1, m=3, n=41
		circleLinkedList.play(1, 3, n);
	}
	
}
输出结果:
被淘汰的小孩的编号为:
3 6 9 12 15 18 21 24 27 30 33 36 39 1 5 10 14 19 23 
28 32 37 41 7 13 20 26 34 40 8 17 29 38 11 25 2 22 4 35 16 
存活的玩家是:31
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值